

University of Cape Town

EEE3097S

Engineering Design: Electrical And Computer Engineering

Final Report

Authors: Student Numbers:

David Young YNGDAV005

Caide Spriestersbach SPRCAI002

October 2022

Table of Contents
Table of Figures .. - 1 -

List of Tables .. - 1 -

A. Administrative Details ...- 3 -
i. Individual Contributions ... - 3 -
ii. Project Management Tool ... - 3 -
iii. Development Timeline .. - 4 -
iv. GitHub Link .. - 4 -

B. Introduction ..- 5 -

C. Requirement Analysis ..- 6 -

1. Interpretation of the requirements ... - 6 -

2. Comparison of encryption algorithms ... - 6 -

3. Comparison of compression algorithms .. - 8 -

4. Feasibility analysis .. - 9 -

5. Possible bottlenecks ... - 10 -

D. Paper Design ... - 11 -

1. Subsystem Design... - 11 -
1.1 Subsystem and Sub-subsystems Requirements and Specifications .. - 11 -

1.1.1 Retrieval & Storage of Data ... - 11 -
1.1.2 Data Processing .. - 11 -
1.1.3 Encryption of data .. - 12 -
1.1.4 Compression of Data.. - 13 -
1.1.5 Transmission of Data ... - 13 -
1.1.6 Checksum ... - 14 -

1.2 Inter-Subsystem and Inter-Sub-subsystems Interactions ... - 14 -
1.3 UML or OP Diagrams.. - 16 -

2. Acceptance Test Procedure ... - 18 -
2.1 Figures of Merit ... - 18 -
2.2 Experiment Design of ATPs .. - 18 -

2.2.1 Experiment Design to Test the Compression ATPs .. - 18 -
2.2.2 Experiment Design to Test the Encryption ATPs ... - 19 -
2.2.3 Experiment Design to Test the Checksum & Transmission of Data ATPs - 19 -

2.3 Acceptable Performance Definition .. - 19 -
2.3.1 Compression subsystem .. - 19 -
2.3.2 Encryption subsystem .. - 20 -
2.3.3 Checksum subsystem ... - 20 -

E. Validation using Simulated or Old Data ... - 21 -

1. Data ... - 21 -
1.1. Data Used .. - 21 -
1.2. Justification of Data Used ... - 21 -
1.3. Initial Analysis of Data .. - 22 -

2. Experiment Setup ... - 26 -
2.1. Experiments to Check Overall Functionality of the System ... - 26 -
2.2. Experiments for Compression Block ... - 26 -
2.3. Experiments for Encryption Block .. - 26 -
2.4. Expected Data to be Retrieved and Returned From Each Block .. - 27 -

3. Results ... - 28 -
3.1. Results of Experiments to Check Overall Functionality of the System ... - 28 -
3.2. Results of Experiments for Compressions Block .. - 29 -
3.3. Results of Experiments for Encryption Block .. - 29 -
3.4. Effects of Changing the Data Provided to the System .. - 31 -

4. Simulated Data Acceptance Test Procedures ... - 32 -
4.1. Compression ATPs .. - 32 -
4.2. Encryption ATPs .. - 33 -
4.3. Checksum ATPs ... - 33 -

F. Validation using the IMU ... - 34 -

1. IMU Module ... - 34 -
1.1. Additional Features... - 34 -
1.2. Testing of the IMU ensuring the system can be extrapolated to the buoy: - 35 -
1.3. Validation test for the IMU module: .. - 35 -

2. Experiment Setup ... - 38 -
2.1. Experiments to Check Overall Functionality of the System ... - 38 -
2.2. Experiments for Compression Block ... - 38 -
2.3. Experiments for Encryption Block .. - 39 -
2.4. Experiments for Checksum Block ... - 40 -
2.5. Expected Data to be Retrieved and Returned From Each Block .. - 40 -

3. Results ... - 41 -
3.1. Results of Experiments to Check Overall Functionality of the System ... - 41 -
3.2. Results of Experiments for Compression Block .. - 45 -
3.3. Results of Experiments for Encryption Block .. - 47 -
3.4. Results of Experiments for Checksum Block... - 49 -
3.5. Effects of Changing the Data Provided to the System .. - 51 -

3.5.1. Under Sampling Experiment ... - 51 -
3.5.2. High Sampling Rate Experiment ... - 53 -
3.5.3. Gaussian Noise Experiment .. - 54 -

4. Practical Data Acceptance Test Procedures ... - 56 -
4.1. Compression ATPs .. - 56 -
4.2. Encryption ATPs .. - 56 -
4.3. Checksum ATPs ... - 57 -
4.4 New Specifications ... - 57 -

4.4.1. Compression ATP .. - 57 -
4.4.2. Encryption ATP .. - 57 -

G. Consolidation of ATPs & Future Plans .. - 58 -
1.1. All the ATPs for the entire system .. - 58 -
1.2 New Specifications ... - 59 -

1.1.1. Compression ATP .. - 59 -
1.1.2. Encryption ATP .. - 59 -

1.3 Future Plans ... - 59 -

H. Conclusion... - 60 -

I. References .. - 61 -

J. Appendixes ... - 62 -

I. Raw Results for Table XXX & XXXI .. - 62 -

II. Raw Results for Table XXXII & XXXIII ... - 63 -

III. Raw Results for Table XXXIV & XXXV .. - 64 -

 - 1 -

Table of Figures
Figure 1 – Screenshot of project management tool front page ... - 3 -

Figure 2 – Development timeline for the project .. - 4 -

Figure 3 – Diagram of the system in operation ... - 15 -

Figure 4 – Diagram showing the operation of the STM module of the System - 16 -

Figure 5 – UML Sequence Diagram Displaying the use case scenario - 17 -

Figure 6 – Graph of time in seconds vs temperature readings .. - 22 -

Figure 7 – Graph of time vs magnitude of acceleration .. - 23 -

Figure 8 – Graph of time vs magnitude of gyroscope measurements - 23 -

Figure 9 – Graph displaying the Fourier Transform of the temperature data - 24 -

Figure 10 – Graph showing the Fourier Transform of the gyroscope data - 25 -

Figure 11 – Graph showing the Fourier Transform of the acceleration data - 25 -
Figure 12 – Command-line output from the overall functionality experiment - 28 -

Figure 13 – Decryption using the correct password.. - 30 -

Figure 14 – Decryption using an incorrect password.. - 30 -

Figure 15 – Command-line output from the overall functionality experiment with noise . - 31 -

Figure 16 – The SparkFun 9DoF IMU Breakout .. - 35 -

Figure 18 – STM2 CLI output for the overall functionality experiment - 41 -

Figure 17 – STM1 CLI output for the overall functionality experiment - 41 -

Figure 19 – Compression block speed vs input size for overall functionality experiment . - 43 -

Figure 20 – Encryption block speed vs input size for overall functionality experiment - 44 -

Figure 21 – Data size vs total computational time for overall functionality experiment - 44 -

Figure 22 – Compression block computational speed versus input data size - 46 -

Figure 23 – Encryption block computational speed versus input data size - 49 -

Figure 24 – STM1 CLI output for the under-sampling experiment - 51 -

Figure 25 – STM2 CLI output for the under-sampling experiment - 51 -

Figure 27 – STM2 CLI output for increased sensor sampling rate experiment - 53 -

Figure 26 – STM1 CLI output for increased sensor sampling rate experiment - 53 -

Figure 28 – STM1 CLI output for gaussian noise experiment ... - 54 -

Figure 29 – STM2 CLI output for gaussian noise experiment ... - 54 -

List of Tables
Table I – Table of individual contributions made by each member - 3 -

Table II – Interpretation of user requirements .. - 6 -

Table III – Functional requirements of the retrieval and storage of data - 11 -

Table IV – Design specifications for the retrieval and storage of data. - 11 -

Table V – Functional requirements for data processing ... - 12 -

Table VI – Design specifications for data processing ... - 12 -

Table VII – Functional requirements for encryption of the data .. - 12 -

Table VIII – Design specifications for encryption of the data .. - 12 -

Table IX – Functional requirements for compression of data... - 13 -

Table X – Design specifications for compression of data... - 13 -

Table XI – Functional requirements for the transmission of data - 13 -

https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892359
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892360
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892361
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892363
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892365
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892366
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892367
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892373
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892374
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892380
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892381
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892382
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892383
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892384
https://uctcloud-my.sharepoint.com/personal/yngdav005_myuct_ac_za/Documents/EEE3097S_2022_FINAL_REPORT_GROUP_20_YNGDAV005_SPRCAI002.docx#_Toc116892385

 - 2 -

Table XII – Design specifications for the transmission of data .. - 14 -

Table XIII – Functional requirements for the checksum subsystem................................... - 14 -

Table XIV – Design specifications for the checksum subsystem - 14 -

Table XV – Figures of merit for each subsystem ... - 18 -

Table XVI – ATPs for the compression subsystem .. - 19 -

Table XVII – ATPs for the encryption subsystem .. - 20 -

Table XVIII – ATPs for the checksum subsystem.. - 20 -

Table XIX – Raw results for the compression block experiments - 29 -

Table XX – Calculated results for the compression block experiments - 29 -

Table XXI – Raw results for the encryption block experiments ... - 29 -
Table XXII – Calculated results for the encryption block experiments.............................. - 30 -

Table XXIII – Changes due to adding noise to the data set .. - 31 -

Table XXIV – Simulation Data ATPs for the compression block - 32 -

Table XXV – Simulated Data ATPs for the encryption block ... - 33 -

Table XXVI – Simulated Data ATPs for the checksum block ... - 33 -

Table XXVII – Raw sensor measurements from the accelerometer - 36 -

Table XXVIII – Raw sensor measurements from the gyroscope - 36 -

Table XXIX – Raw sensor measurements from the magnetometer - 37 -

Table XXX – Results for the overall functionality experiment .. - 42 -

Table XXXI – Average results for the overall functionality experiment............................ - 43 -

Table XXXII – Calculated results for the compression block experiments........................ - 45 -

Table XXXIII – Average results for the compression block experiment - 46 -

Table XXXIV – Calculated results for the encryption block experiments - 47 -

Table XXXV – Average results for the encryption block experiment................................ - 48 -

Table XXXVI – Raw results for the checksum block experiments - 49 -

Table XXXVII – Average checksum generation speed for checksum algorithm - 50 -

Table XXXVIII – Raw results for the checksum block experiments - 50 -

Table XXXIX – Under-sampling experiment compression results - 51 -
Table XL – Under-sampling experiment encryption results ... - 52 -

Table XLI – Increased sampling rate experiment compression results - 53 -

Table XLII – Increased sampling rate experiment encryption results - 54 -

Table XLIII – Gaussian noise experiment compression results.. - 55 -

Table XLIV – Gaussian noise experiment encryption results .. - 55 -

Table XLV – Practical data ATPs for the compression block .. - 56 -

Table XLVI – Practical data ATPs for the encryption block .. - 56 -

Table XLVII - Practical data ATPs for the checksum block .. - 57 -

Table XLVIII – new specification for compression algorithm vs old specification - 57 -

Table XLIX – new specification for encryption algorithm vs old specification................. - 57 -

Table L – ATPs for entire system ... - 58 -

Table LI – new specification for compression algorithm vs old specification - 59 -

Table LII – new specification for encryption algorithm vs old specification - 59 -

Table LIII – Raw results for the overall functionality experiment - 62 -

Table LIV – Raw results for the compression block experiment - 63 -

Table LV – Raw results for the encryption block experiment .. - 64 -

 - 3 -

A. Administrative Details

i. Individual Contributions

Both members worked equally on the project and contributed to each section. However, some

areas were focused more heavily on by a specific member. These sections are listed below.

Table I – Table of individual contributions made by each member

Name Description Sections Pages

David Young

YNGDAV005

Equally contributed to Paper

Design. Major contributions

were on experiment designs,

results, and ATPs throughout

Progress Report 1 and Progress

Report 2.

C.1 C.3 C.5 D.1.1.4

D.1.1.6 D.2 E.2.1 E.2.2

E.2.4 E.3.1 E.3.2 E.3.4

E.4.1 E.4.3 F.1.3, F.2.1

F.2.2 F.2.4 F.2.5 F.3.1

F.3.2 F.3.4 F.3.5 F.4.1

F.4.3 F.4.4 J

6, 8, 9, 10, 13,

14, 18, 19, 20,

26, 27, 28, 29,

31, 32, 33, 35,

36, 37, 28, 39,

40, 41, 42, 43,

44, 45, 46, 47,

49, 50, 51, 52,

53, 54, 55, 56,

57, 62, 63, 64,

65

Caide Spriestersbach

SPRCAI002

Equally contributed to Paper

Design. Other contributions

were on Data usage, experiment

design, ATPs, and IMU details

throughout Progress Report 1

and Progress Report 2. Majorly

contributed to consolidation of

ATPs, Future Plans, and

Conclusion

B C.1 C.2 C.4 D.1.1.1

D.1.1.2 D.1.1.3 D.1.1.5

D.1.2 D.1.3 E.1 E.2.3

E.3.3 E.4.2 F.1.1 F.1.2

F.2.3 F.3.3 F.4.2 F.4.4

G.1.1 G.1.2 G.1.3 H

5, 6, 7, 9, 11,

12, 13, 14, 15,

16, 17, 21, 22,

23, 24, 25, 26,

27, 29, 30, 31,

33, 34, 35, 39,

40, 47, 48, 49,

56, 57, 58, 59,

60

ii. Project Management Tool

Below is a screenshot of the front page of our project management tool as of Thursday, 13

October 2022.

Figure 1 – Screenshot of project management tool front page

Link to project manager tool.

https://software.projectmanager.com/project/board/E

 - 4 -

iii. Development Timeline

As can be seen by the timeline below, the development is on time.

Figure 2 – Development timeline for the project

iv. GitHub Link

The members made use of a GitHub git repository used throughout this project. Below is a link

to the GitHub repository.

https://github.com/the-user-created/EEE3097S-Project

https://github.com/the-user-created/EEE3097S-Project

 - 5 -

B. Introduction

As a part of studying the movement and atmosphere of the Antarctic pancake ice, the SHARC

buoy in Antarctica consists of multiple sensors and other processors. The following report will

outline the requirements and design procedure for the compression and encryption of data

received by the Inertial Measurement Unit (IMU) – one of the crucial sensors onboard the

buoy. The data is compressed to reduce the transmission cost, as Iridium is exceptionally

costly.

The compression and encryption will be done on the STM32F051 Discovery Board, which will

be connected to the Sense HAT B – which houses the sensors and records the data. The STM32

Discovery Board makes use of the ARM Cortex M0 core. This will be responsible for

processing, encrypting, compressing, and transmitting the relevant data packets from the IMU,

which will be used to analyse the environment surrounding Antarctica.

The report will analyse the requirements outlined in the project design brief, present the

subsystem and the sub-subsystem design, outline the acceptance test procedures, and the

development timeline of the overall design. In doing so, the report will summarise each

requirement derived from the project brief, compare various compression and encryption

algorithms to determine the most suitable algorithm, analyse the feasibility of the overall

project, present possible bottlenecks of the system, outline Subsystem and Sub-subsystem

requirements and specifications, as well as the Inter-Subsystem and Inter-Sub-subsystems

interactions, present the UML diagrams for the overall system. The acceptance test procedures

will make use of figures of merit, which will be used to validate the design. The report will

present and summarise the experiment design used to test the figures of merit and adumbrate

the acceptable performance definition.

 - 6 -

C. Requirement Analysis

1. Interpretation of the requirements

The following is extrapolated based on the requirements outlined in the design project brief.

The requirements below will be used to produce the functional requirements and hence the

specifications in the subsequent sections. These requirements are listed in no particular order.

Table II – Interpretation of user requirements

User Requirement ID Description

UR1 Data must be encrypted.

UR2 Data must be compressed.

UR3 Client requires at least 25% of the lower Fourier coefficients of

the data.

UR4 Power usage must be low to increase battery life.

UR5 Software may be written in any language.

UR6 Processing load on the STM board must be low.

UR7 A motion tracking device must be used to collect the data.

UR8 The STM32F051 Discovery Board must be used.

2. Comparison of encryption algorithms
Encryption can be broken down into two types, asymmetric and symmetric. Symmetric

cryptography uses the same key for encryption and decryption [1]. A unique key is produced

for each pair of participants [1]. Since symmetric encryption uses keys that are only known to

the two parties making use of the encryption, this brings about a level of authentication. The

benefits of using symmetric cryptography are that it is relatively inexpensive for a strong key

for ciphering to be produced, the algorithms are computationally cheap, the level of protection

dictates the size of the key, and the keys tend to be smaller for the level they afford [1]. The

possible downfalls of symmetric encryption are that the privacy of the key must be retained to

ensure confidentiality and authentication – this usually means that the key must be encrypted

in another key, and the recipient must already have the key for decryption of the encrypted

secret-key [1].

Asymmetric cryptography (also known as public-key encryption) uses a pair of keys, known

as the public and private keys, which are associated with an individual who needs to encrypt

data [1]. Each public key is published while their corresponding private keys are kept secret

 - 7 -

[1]. All data encrypted with the public key can only be decrypted using the corresponding

private key [1]. The possible benefit of using an asymmetric algorithm is that the transmission

of data packets will be protected in a public domain environment, i.e., the internet [1]. The

possible downfalls are that if the private key becomes lost or forgotten, the sent data cannot be

decrypted, as authentication cannot be made.

The Advanced Encryption Standard (AES) is a symmetric cryptographic algorithm that can be

used to protect data [2]. The AES is a block cypher, meaning it will take in data of a fixed size

in bits and produce the exact size of bits of ciphertext – an unintelligible form of data [3]. The

algorithm has the capacity of using keys of lengths 128, 192, and 256 bits to encrypt and

decrypt blocks of data of size 128 bits. The AES is highly efficient for 128-bit form, can be

implemented in hardware and software, has open source code, and is invulnerable to most

attacks except brute force.

The RSA algorithm is an asymmetric cryptography algorithm. It has become the standard for

encrypting and decrypting data shared via the internet. The algorithm's encryption strength

depends on the key's size, and a larger key size means a more secure algorithm. The algorithm

is known to be robust and reliable but also known to be computationally intensive.

Blowfish is a symmetric block cypher cryptography algorithm. The most notable features of

this algorithm are that the cypher block size is 64 bit, variable key length from 32 to 448 bits,

known to be much faster than other algorithms, royalty-free (in the public domain), and no

license required to use [4]. The algorithm is a quick, reliable, flexible, and unbreakable [4].

The biggest downfall is the 64-bit block, which the algorithm encrypts individually and is not

as secure as other algorithms.

Twofish is the predecessor to blowfish and is the same as blowfish, with the difference that it

is faster, more flexible, and more secure. It, too, is license free and in the public domain. It has

a 128-bit data block, encrypts in 16 rounds, and is ideal for hardware. It was the fastest

algorithm across all CPUs, competing to become the AES, and it fits into a few gates in the

hardware [5]. There is no other algorithm available with the same flexibility in implementation,

the ability of Twofish to trade off key-setup time and RAM and ROM for encryption speed

[5].

Although AES is widely used and open-sourced, the code is not as small in size and length as

Twofish. Twofish has the same benefits as AES but has shorter and faster code. RSA is

asymmetric, which is not the preferred method of key encryption as it will be computationally

intensive, which goes against UR006. Blowfish is faster than most algorithms but is not as

secure as Twofish, while it does share the same benefits. The two encryption algorithm has a

unique combination of flexibility, speed, and conservative design [5].

Although AES is widely used and open-sourced, the code is not as small in size and length as

Twofish. Twofish has the same benefits as AES but has shorter and faster code. RSA is

asymmetric, which is not the preferred method of key encryption as it will be computationally

intensive, which goes against UR006. Blowfish is faster than most algorithms but is not as

secure as Twofish, while it does share the same benefits. The two encryption algorithm has a

unique combination of flexibility, speed, and conservative design [5].

 - 8 -

3. Comparison of compression algorithms
Compression can be either lossy or lossless. In lossless compression, the physical file size is

reduced while the integrity of the data is retained. This means that the original data can be

perfectly recovered at the decompression stage without any depreciation of data quality. In

lossy compression, the compression stage comprises the data quality by eliminating data which

is not noticeable. This means that the original data can never be recovered after the

compression is complete. Lossy compression compresses images, audio, and video, whereas

lossless compression compresses text, audio, and images [6].

One of the foundational compression algorithms, LZ77, was created by Abraham Lempel and

Jakob Ziv in 1977 [7]. Some notable compression software used today that are based on LZ77

are ZIP and GZIP [8]. The main idea behind LZ77 is to replace multiple occurrences of the

same sequence of bytes with an index reference to the first occurrence of that sequence. This

is achieved by using a sliding window to inspect the source sequence of bytes and to maintain

a ledger of historical data that serves as a dictionary [9]. The sliding window comprises of a

look-ahead buffer and a search buffer. The search buffer consists of the dictionary and the

recently encoded data. The lookahead buffer contains the next portion of the input data

sequence to be encoded [9]. The dictionary contains three values; Offset (distance between the

start of sequence and beginning of the file), run-length (number of characters in the sequence),

and the deviating characters (markers indicating a new sequence) [7]. The sliding window size

is one of the major factors which affects the performance of the compression [9]. The shorter

the sliding window size is, the faster the compression will take. However, the likelihood of

finding repeated sequence occurrences will decrease; hence, the resultant compressed file will

increase in size. Therefore, there is a trade-off to be made between the speed of compression

and the effectiveness of the compression. In practice, the effectiveness of the compression is

correlated to the data being compressed, and the sliding window size can be from several

kilobytes to several megabytes [9].

LZR is a modification of LZ77 that was invented by Michael Rodeh et al. in 1981 [10]. LZR

was designed to be a linear time alternative to LZ77; however, the encoded pointers can point

to any offset in the file [7]. This results in the memory requirements of LZR increasing as the

size of the input string increases [10]. Combined with its poor compression ratio, LZ77 is often

superior; LZR is an impractical variant.

Lempel-Ziv-Storer-Szymanski [11], or LZSS, is another algorithm designed as a variant of

LZ77. It was first published in 1982 by James Storer and Thomas Szymanski. LZSS manages

to improve upon LZ77 by detecting whether a given substitution will decrease the compressed

file size or not [7]. If it doesn’t, the input is left in its original form; otherwise, the sequence is

substituted with an offset-length pair [7]. LZSS also improves upon LZ77 by eliminating the

use of deviating characters. This decreases the size of the dictionary and hence improves the

efficiency of the compression. LZSS is commonly used for archive formats such as RAR [7].

Deflate (stylised as DEFLATE) was invented by Phil Katz in 1993 [12] and has become the

basis for most compression tasks today. Deflate combines the LZ77 (or LZSS pre-processor)

algorithm with Huffman coding. Huffman coding is a lossless entropy (smallest number of bits

needed, on average, to represent a symbol) encoding compression method which assigns codes

based on the frequency of a symbol occurrence [7]. The codes are stored in a Code Book,

 - 9 -

constructed for the input string. Each of these codes is variable-length, where the length of the

code is based on the frequency of the corresponding symbols [9]. There are two main properties

behind Huffman coding; codes for more frequently occurring symbols are shorter than codes

for less regularly occurring characters, and each code can be uniquely decoded [9]. Due to the

last property, each of the codes must be prefix codes, meaning that the code for a symbol cannot

be a prefix of a code for any other character. Huffman encoding has two steps. The first step is

to build a Huffman tree (type of binary tree) of the original symbols from the input string. Then

the Huffman tree is traversed, and codes are assigned to each character in the tree.

The final lossless compression algorithm to be evaluated is Brotli. Brotli is developed by

Google. Brotli uses both LZ77 and Huffman coding like Deflate but introduces 2nd order

context modelling to increase the effectiveness of the compression [13] while retaining similar

speeds to Deflate. Context modelling uses preceding events to model the next event.

4. Feasibility analysis
The microcontroller uses a fixed-point ARM processor, which means it cannot process floating

point values. This may affect the compression and encryption algorithms, leading to

readdressing the choice of the algorithm used.

The algorithm used, either for compression or encryption, could be too computationally

intensive for the microcontroller – which may result in a revision in which a slower but less

computationally intensive algorithm must be used. The algorithm for compression may have a

high loss rate, failing to meet the requirement UR003.

The IMU has different modes of operation, which will allow for a low power consumption

mode, increasing the battery's life span. Other operation modes could lead to a short life span

of the battery, which could hinder the entire system.

Another issue which could hinder the project is that the Discovery Board only has 64kb flash

memory and 8 bytes of RAM, which means that a complex method will be needed to run the

compression and encryption algorithm on the STM Discovery Board itself.

Filtering the data so that 25% of the IMU’s coefficients are extracted may be a challenge to

implement. It is also tough to process and work with the STM Discovery Board due to our lack

of experience and knowledge of the hardware. Further research and learning may be required.

Despite the above challenges, we have the time and resources to ensure that all user

requirements are met.

 - 10 -

5. Possible bottlenecks
Some trade-offs and restrictions have already been detailed in the sections above. Some are yet

to be documented. The bottlenecks due to trade-offs expected to occur are described in the

following paragraphs.

In terms of data collection, the size of each packet of data that needs to be transferred must be

considered. The data link between the STM discovery board and the sensor HAT could create

congestion if the transfer speed is too slow or the size of packets is too large.

The next bottleneck to consider is the processing time. This bottleneck is affected by the

collection of data bottleneck detailed above. The larger the packet of data to be compressed

and encrypted, the longer it will take to be processed and the longer it will take to be

transmitted.

The STM storage is limited to 64 kilobytes of flash memory. Initial estimations place the size

of the software around 34 kilobytes. This means there are only 30 kilobytes of ‘free’ storage

for data collection before compression and encryption.

The choice of compression and encryption algorithms could become a significant issue. The

stronger the compression, the longer it will take to compress a given file, as well as increasing

the amount of RAM used for the compression software. In terms of encryption, every

encryption algorithm will operate at different speeds depending on the input data type. Some

algorithms work better with finite data lengths, whereas others work better with varying data

lengths.

The collection, compression or data encryption processing time may require significant data

processing time. In that case, the power usage of the STM will increase significantly.

Depending on the physical set-up of the buoy-STM system, this could be either a minor or

major issue.

 - 11 -

D. Paper Design

1. Subsystem Design
1.1 Subsystem and Sub-subsystems Requirements and

Specifications

1.1.1 Retrieval & Storage of Data

This subsystem focuses on retrieving the data generated by the IMU and storing said data on

the STM32F0 Discovery board (further referred to as STM). We are constrained only to use

64 kilobytes of flash memory and 8 kilobytes of RAM due to the design of the STM. The STM

cannot add external storage space like an SD card.

Table III – Functional requirements of the retrieval and storage of data

Functional

Requirement ID

Description User Requirement

Addressed

FR1 The IMU is a 9-axis MEMS Motion

Tracking device is used.

UR7

FR2 Data cannot be stored in large

quantities on the STM.

UR8

FR3 The processing on the STM must not

be computationally intensive.

UR6

Table IV – Design specifications for the retrieval and storage of data.

Design Specification ID Description Functional Requirement ID

DS1
The ICM-20948 MEMS

motion tracking is used.
FR1

1.1.2 Data Processing

UR003 states that at least 25% of the lower Fourier Coefficients must be extracted. This

reduces the strain on the STM as it has limited onboard storage, and as there is no possibility

of increasing that storage, this will play a vital role in the entire system. The reduction in the

size of the collected data will also increase the efficiency of the compression and encryption

algorithm. The IMU cannot record the data in the frequency domain; it measures in the time

domain – it is essential for a system to be designed to transform the data to the frequency

domain. It is desired to use the Fast Fourier Transform (FFT) to do such a transform for

efficiency. To use the FFT, the correct sample time must be used, and the amount of data

collected must also be compatible with the onboard storage of the STM. This will allow the

subsequent Fourier coefficients to be collected and processed. Based on research from the STM

IDE page, it is recommended that the programming language to be used is either C, C++,

https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf

 - 12 -

Pascal, or Java. In the case of this project, we will use a combination of programming languages

on the computer but predominantly use C on the STM.

Table V – Functional requirements for data processing

Functional

Requirement ID

Description User Requirement

Addressed

FR4 Some of the Fourier coefficients must

be retained after compression

UR3

FR5 The programming language used must

be compatible with the STM

Discovery Board without

modifications.

UR8 & UR5

Table VI – Design specifications for data processing

Design Specification ID Description Functional Requirement ID

DS2
At least 25% of the Fourier

Coefficients must be retained,

this can be done by filtering

the data using code.

FR4 & FR5

1.1.3 Encryption of data

The encryption will be done using the Twofish algorithm. This is one of the world's fastest,

most flexible and most secure algorithms. Twofish is also compatible and easy to implement

on the STM32F051 Discovery Board. Ideally, the encryption will be run on the STM, but this

depends on the onboard memory. Encrypting data packets that are transmitted is good practice

for ensuring the confidentiality of the information. Twofish will provide secure encryption for

the data from the SHARC buoy to the researchers.

Table VII – Functional requirements for encryption of the data

Functional

Requirement ID

Description User Requirement

Addressed

FR6 All data received by and from the

STM must be suitably encrypted.

UR1

FR7 The encryption algorithm must be

light and computationally inexpensive.

UR6 & UR4

Table VIII – Design specifications for encryption of the data

Design Specification ID Description Functional Requirement ID

DS3
Twofish algorithm to be used

as it is lightweight and is

suitable for all types of

encryption.

FR6 & FR7

 - 13 -

1.1.4 Compression of Data

Based on the comparisons made in section C, the requirement analysis, between various

compression algorithms, the LZSS compression algorithm was chosen. This algorithm was

selected due to its high compression ratio, speed, and relative lack of complexity. The data

compression will occur before the data's encryption. This is because, after encryption, the data

becomes primarily random; hence, the compression algorithm is unlikely to find enough

matching sequences of characters to compress the data file effectively.

The SHARC buoy requires a compressed file due to the use of a satellite link to transmit the

data. This method of communication has high data transfer costs and inconsistent transmission

and bandwidth. Therefore, any efforts to reduce the transmission file size are critical.

Table IX – Functional requirements for compression of data

Functional

Requirement ID

Description User Requirement

Addressed

FR8 All data received by and from the

STM must be suitably compressed.

UR2

FR9 The compression algorithm must be

effective and computationally

inexpensive.

UR6 & UR4

Table X – Design specifications for compression of data

Design Specification ID Description Functional Requirement ID

DS4
LZSS algorithm is to be used

as it is effective and is

suitable for text based

compression.

FR8 & FR9

1.1.5 Transmission of Data

Once the data has been compressed, encrypted, and checked if the contents are sufficient –

have at least 25% of the lower Fourier coefficients, the data will be transmitted from the

SHARC buoy via Iridium. Iridium is a satellite communications company whose only service

is providing voice and data services to everywhere on the earth, even the remote Antarctic.

Iridium is extremely costly, so compression and encryption are vital in ensuring the project's

feasibility.

Table XI – Functional requirements for the transmission of data

Functional

Requirement ID

Description User Requirement

Addressed

FR9 All compressed and encrypted data

must be received by the researchers.

UR1 & UR2 & UR3

 - 14 -

Table XII – Design specifications for the transmission of data

Design Specification ID Description Functional Requirement ID

DS5
All encrypted and

compressed data will be

transmitted via the Iridium

network from SHARC buoy

to researchers.

FR9

1.1.6 Checksum

Before the compression and encryption of the data, a CRC-32 checksum of the data file will

be created. After the data is transmitted, decrypted, and decompressed on the client side,

another CRC-32 checksum will be made. These two checksums can then be compared to verify

whether the data file has changed during any of the stages between the data collection and the

data decompression.

Table XIII – Functional requirements for the checksum subsystem

Functional

Requirement ID

Description User Requirement

Addressed

FR10 The data received by the researchers

must be identical to the data recorded

on the STM.

UR3

Table XIV – Design specifications for the checksum subsystem

Design Specification ID Description Functional Requirement ID

DS6
The integrity of the data will

be verified by a CRC-32

checksum.

FR10

1.2 Inter-Subsystem and Inter-Sub-subsystems Interactions

All the above submodules form the primary system where the compression, encryption and

transmission of the data received from the IMU will occur. Although the STM itself is a

submodule of the overall SHARC buoy, this paper design treats the STM as if it were the main

module – all of the above submodules form a part of the larger STM submodule. The IMU-

20948 is another submodule apart from the SHARC buoy, which will interact with the STM,

allowing for the transmission of data from the sensor to the STM. This data transmission

between the IMU and STM is a sub-subsystem of the overall buoy system.

Once the STM has filtered the data, a CRC-32 checksum of the data file will be created. The

data will be compressed using the LZSS algorithm. This task is performed by the 4th submodule

outlined above. Following compression, the Twofish algorithm encrypts the data before it is

transmitted to the computer – this is the 3rd submodule described above. Following encryption,

the data processing is complete, and the encrypted data packet is now ready for transmission

via Iridium to the researchers.

 - 15 -

It should be noted that the entire subsystem depends on the lifespan, battery life, and storage

on the STM Discovery board and is susceptible to the IMU-20948, which will determine the

sample rate. This dictates the efficiency of submodule one above and will impact the overall

SHARC buoy. The processes described above are explained in the diagram below.

Figure 3 – Diagram of the system in operation

 - 16 -

1.3 UML or OP Diagrams

The following UML diagram depicts how all the submodules interact to make up the overall

SHARC buoy system and the flow in which the submodules operate. Note that this is a

sequential process – a submodule must complete its operation before the next submodule can

proceed with its task.

Figure 4 – Diagram showing the operation of the STM module of the System

 - 17 -

It should be noted here that the STM used on the SHARC buoy is the same STM

microcontroller used for the decryption and decompression of the data set which is returned by

the SHARC buoy. This is done to ensure the same ARM processor and architecture which will

guarantee that the data decompressed and encrypted is the same, this is verified using the

checksum.

Figure 5 – UML Sequence Diagram Displaying the use case scenario

 - 18 -

2. Acceptance Test Procedure
The acceptance test procedures used to evaluate the performance of the design and whether it

meets the minimum requirements are analysed in the following subsections below.

2.1 Figures of Merit

Table XV – Figures of merit for each subsystem

Subsystem Figures of Merit

1: Retrieval &

Storage of Data

The sample time of sensor values should be correct.

The sampled data should not exceed the storage restrictions due to the

size of the code files.

2: Data

Processing

Determine the execution speeds, efficiency, and correct processing of

the STM.

3: Encryption of

Data

The execution time of the algorithm should not exceed 10 seconds

per 10 kilobytes of data.

The algorithm should be secure as well as unlikely to be decrypted.

4: Compression of

Data

The compression algorithm should be efficient and take no longer

than 5 seconds per 10 kilobytes of data.

No data must be lost during the compression of the data file.

The compression ratio of the original file size and the compressed file

size should be at least 1.5.

5: Checksum
The checksum of the original data file should be created successfully

on the STM and it should match the checksum of the decompressed

data file on the client-side.

6: Transmission

of Data

No packet loss should occur during transmission of the encrypted

data file.

2.2 Experiment Design of ATPs

The compression and encryption experiment design handle the data processing subsystem

ATP. The following tests will be conducted using the computer in which is connected to the

STM. The implications of running the tests on the computer rather than the STM is that during

operation on the SHARC buoy it will not be possible to verify that the system is working the

same as it was during testing. However, this can be overcome by storing the test results of the

initial design testing on the computer and compared against the results of the STM onboard the

SHARC buoy as a means of error detection and validation.

2.2.1 Experiment Design to Test the Compression ATPs

Various sample IMU datasets are available for testing the compression figures of merit. The

LZSS compression algorithm will be used to compress the data file. The LZSS decompression

algorithm will also be used to decompress the compressed file. The resultant compressed file

can be compared to the original data file to determine the compression ratio. The decompressed

file can then be compared to the original data file to determine whether the data was corrupted.

The execution time of the compression (and decompression) algorithm can be recorded to

create a benchmark to determine the mean speed of compression.

 - 19 -

2.2.2 Experiment Design to Test the Encryption ATPs

Various sample IMU datasets are available for testing encryption figures of merit. The Twofish

algorithm will be used to encrypt the data file and decrypt the encrypted file. The quality of the

encryption algorithm can be determined by attempting to decrypt the file using different keys.

If any key besides the key generated by the encryption algorithm manages to decrypt the file,

then the encryption is not successful. The execution time of the encryption (and decryption)

algorithm can be recorded to create a benchmark to determine the mean speed of encryption.

The last test will compare the original file to the decrypted file to determine whether it is

human-readable.

2.2.3 Experiment Design to Test the Checksum & Transmission of Data

ATPs

A CRC-32 checksum of the data file can be created before compression and encryption. The

data file will then be compressed, encrypted, and transmitted to the user. The file can then be

decrypted and decompressed on the users' end, and a CRC-32 checksum of the resultant file

can be created. The users’ checksum and the STM’s checksum can then be compared. If the

two checksums are different, then the original data file was likely compromised during any

stages between the creation of the two checksums.

2.3 Acceptable Performance Definition

The design needs to be able to compress the data sufficiently enough to be efficiently

transferred by the Iridium satellite network. However, no data should be lost during the

compression process; therefore, lossless compression must be used. The design also needs to

encrypt the compressed data to ensure that the transmission is confidential. The processing

handled on the buoy must consume as little battery power as possible to ensure that the design

does not incur frequent battery recharging.

2.3.1 Compression subsystem
Table XVI – ATPs for the compression subsystem

ATP Description

Compression time
The compression algorithm must take no longer than 5 seconds per

10 kilobytes of data. The system passes if it achieves this

requirement.

Data loss
No data must be lost during the compression of the data file. The

system passes if it achieves this requirement.

Compression

effectiveness

The compression ratio of the original file size and the compressed file

size must be at least 1.5. The system passes if it achieves this

requirement.

 - 20 -

2.3.2 Encryption subsystem
Table XVII – ATPs for the encryption subsystem

ATP Description

Encryption time
The execution time of the encryption and decryption should not

exceed 10 seconds per 10 kilobytes of data. The system passes if it

achieves this requirement.

Data loss
No data must be lost during the encryption and decryption of the data

file. The system passes if it achieves this requirement.

Encryption

security

The encryption must be strong enough to prevent trivial decryption.

The system passes if it achieves this requirement.

Encryption

integrity

The original data file’s contents must be identical to the decrypted

data file’s contents. The system passes if it achieves this requirement.

2.3.3 Checksum subsystem
Table XVIII – ATPs for the checksum subsystem

ATP Description

STM checksum
The STM must create a checksum of the original data file

successfully. The system passes if it achieves this requirement.

Client checksum
The client’s device must create a checksum of the decrypted and

decompressed file successfully. The system passes if it achieves this

requirement.

Checksum

comparison

The client’s and STM’s checksums must be identical. The system

passes if it achieves this requirement.

 - 21 -

E. Validation using Simulated or

Old Data

1. Data
Supplying the algorithms used for compression and encryption with simulated data was done

to validate the workings of these algorithms. The following information concerns the data sets

used, the file formats and how this relates to the compression and encryption for the SHARC

Buoy project.

1.1. Data Used

The members decided to use simulated data as it would replicate the type of information we

would receive from the Sense Hat B on the buoy in Antarctica. The file formats used in testing

were binary, text and Comma-Separated Values (CSV), as it is common in Digital Signal

Processing to use these file formats. Hence, it is essential to test the encryption and

compression of these file types. Encryption and compression occurred on different data sets

(in three file formats). The first data set was collected by the user carrying the Inertial

Measurement Unit (IMU) in their pocket and walking around, sitting down and standing for

over 5 minutes. The second data set recordings were from the IMU being fixed on a rotation

platform – the IMU was fixed to one of its axes, and the data was recorded for 10 minutes. The

third data set was the same recording environment as the second, however, at a lower sample

rate. The team decided to use every data point available in the sample data set, this included

all axes for the gyroscope, and accelerometer as well as the time, count, yaw, pitch, roll, and

temperature as it was decided that the more data sets available now with the current working

system will mean that if there needs to be additional data collected in future on the SHARC

buoy, the system does not need to be modified to accommodate these changes; allows for

scalability. This data also allows for the testing of the compression time, whether data is lost

through the system, and if the compression ratio is desired as means of determining if the ATPs

for compression have been met. Likewise, this testing with simulated data will allow the same

testing for the encryption time, whether the encryption is secure, and if the file passed to the

system is identical to the decrypted and decompressed file; this will also verify the ATPs for

the checksum mainly a checksum is generated and the checksum being identical at the

beginning and end of testing.

1.2. Justification of Data Used

The simulated data will accurately represent the data recorded on the buoy in Antarctica;

therefore, the data sets will be suitable for testing the compression and encryption blocks since

we were unable to collect data from a sensor for testing; it is important to use simulated data

to ensure the functionality of the system. Different file sizes and types were tested to test the

efficiency of the encryption and compression algorithm and ensure functionality. The file

format in which the data will be stored and processed from the Sense Hat and IMU has not

been finalised. The file format to be used will be completed once testing with the IMU and

 - 22 -

Sense Hat commences. It was then decided to test multiple file formats in the simulation phase

to ensure that the encryption and compression would work with the file format used in the final

product. The simulated data will be compared against the experimental data to test the

acceptance test procedures and receive figures of merit. Following compression, encryption,

decryption and decompression, the file will be in the same format as the IMU recorded; this

can only be achieved in the simulation if the data set and format are the same as the one used

in the practical application.

1.3. Initial Analysis of Data

Since the files contain similar data sets, it was decided to use the first thousand samples from

the "EEE3097S 2022 Turntable Example Data 2.csv". The following three plots depict the

relationship of the data collected from the IMU in the time domain; the following three plots

show a sample of the Fourier Transform. Since the compression and encryption algorithms are

both lossless, 25% of the Fourier Coefficients will be preserved – satisfying the user

requirement. The project focuses on the encryption and compression of the files which contain

the data; it was therefore not considered of high importance to value the IMU’s actual data or

actual readings. The following is however an example of how the data collected by the IMU

can be analysed by making use of some data points of the sample data.

Figure 6 – Graph of time in seconds vs temperature readings

0

10

20

30

40

50

60

70

0.
0

93
99

99
97

9.
6

23
99

95
96

19
.3

26
0

00
21

28
.7

46
0

00
29

38
.2

06
0

01
28

47
.8

55
9

98
99

59
.6

76
9

98
14

71
.4

86
9

99
51

81
.2

64
9

99
39

91
.0

59
9

97
56

10
0

.6
95

99
91

11
0

.1
36

00
16

11
9

.6
16

99
68

12
9

.5
50

99
49

13
9

.4
23

99
6

14
9

.5
48

00
42

15
9

.2
87

99
44

16
9

.0
76

00
4

17
8

.5
63

99
54

18
7

.7
66

00
65

19
7

.0
07

99
56

20
6

.5
37

99
44

21
6

.5
31

00
59

22
6

.6
64

99
33

23
6

.6
13

99
84

24
6

.1
23

00
11

25
5

.6
19

99
51

26
4

.9
28

98
56

27
3

.9
62

00
56

28
3

.6
18

98
8

29
3

.1
70

01
34

30
2

.7
01

99
58

31
2

.1
56

00
59

32
1

.5
18

00
54

33
0

.4
94

99
51

34
0

.1
75

99
49

34
9

.5
29

99
88

35
9

.2
60

00
98

36
8

.9
33

99
05

37
8

.6
36

99
34

Time vs Temperature

T
em

p
er

at
u
re

 (
°C

)

Time (s)

 - 23 -

Figure 8 – Graph of time vs magnitude of gyroscope measurements

The following three graphs depict the Fourier transform of the simulated data. These graphs

show what the data sets should produce once they have been decrypted, decompressed and

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
0

93
99

99
97

0.
3

35
00

00
08

0.
5

73
00

00
14

0.
7

63
99

99
99

0.
9

35
00

00
02

1.
1

13
99

99
63

1.
3

19
00

00
06

1.
5

26
00

00
23

1.
7

38
00

00
35

1.
9

25
99

99
99

2.
1

94
00

00
06

2.
4

15
99

98
89

2.
6

25
99

99
28

2.
8

25
99

99
75

3.
0

52
00

00
46

3.
2

75
00

00
95

3.
4

80
00

00
19

3.
7

26
00

00
71

3.
9

30
00

00
67

4.
1

97
00

00
27

4.
4

03
99

98
05

4.
6

10
00

01
34

4.
8

22
99

99
54

5.
0

05
00

01
14

5.
2

22
00

01
22

5.
4

09
99

98
47

5.
6

05
00

00
19

5.
8

15
99

99
85

6.
1

02
00

02
37

6.
3

23
99

98
82

6.
5

61
99

97
98

6.
7

48
00

01
45

6.
9

31
00

02
33

7.
1

56
00

01
37

7.
3

97
99

97
63

7.
5

84
00

01
11

7.
8

02
00

00
46

Time vs Gyroscope Magnitude

A
cc

el
er

at
io

n

Time (s)

G
y
ro

sc
o
p
e

M
ag

n
it

u
d
e

Time (s)

Figure 7 – Graph of time vs magnitude of acceleration

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0.
0
93

99
99

…
0.
3
35

00
00

…
0.
5
73

00
00

…
0.
7
63

99
99

…
0.
9
35

00
00

…
1.
1
13

99
99

…
1.
3
19

00
00

…
1.
5
26

00
00

…
1.
7
38

00
00

…
1.
9
25

99
99

…
2.
1
94

00
00

…
2.
4
15

99
98

…
2.
6
25

99
99

…
2.
8
25

99
99

…
3.
0
52

00
00

…
3.
2
75

00
00

…
3.
4
80

00
00

…
3.
7
26

00
00

…
3.
9
30

00
00

…
4.
1
97

00
00

…
4.
4
03

99
98

…
4.
6
10

00
01

…
4.
8
22

99
99

…
5.
0
05

00
01

…
5.
2
22

00
01

…
5.
4
09

99
98

…
5.
6
05

00
00

…
5.
8
15

99
99

…
6.
1
02

00
02

…
6.
3
23

99
98

…
6.
5
61

99
97

…
6.
7
48

00
01

…
6.
9
31

00
02

…
7.
1
56

00
01

…
7.
3
97

99
97

…
7.
5
84

00
01

…
7.
8
02

00
00

…

Time vs Acceleration Magnitude

 - 24 -

analysed using software such as Matlab. Matlab_R2022a was used to produce the following

graphs.

Since the Fourier graph is symmetric it was decided to only plot one side of the graph as it

would be the same peak values for the negative frequencies. The graph displays a peak at the

origin and then tends to towards zero as the frequency increases. The data set is more linear

than random, since the temperature rarely fluctuates when compared to the graphs below.

Figure 9 – Graph displaying the Fourier Transform of the temperature data

 - 25 -

As seen above, significant noise is present in the graphs except for temperature – which has a

Figure 11 – Graph showing the Fourier Transform of the acceleration data

Figure 10 – Graph showing the Fourier Transform of the gyroscope data

 - 26 -

spike at the origin, whereas the others follow an unexpected relationship. There is multiple

fluctuations in the data, this indicates that the correlation coefficient between each data set is

higher when compared to the data set of temperature. The above graphs represent the data in

the frequency domain rather than the time domain, this is normally done for digital signal

processing. The samples within the first 20ms were used to plot the Fourier transform.

2. Experiment Setup
2.1. Experiments to Check Overall Functionality of the

System

The overall System uses a combination of encryption and compression functions in one Python

file. The compression block will compress the input data file, passing the output file to the

encryption block to encrypt the compressed file. The encrypted file can then be decrypted and

decompressed to retrieve the original data. After decryption and decompression, a Python built-

in comparison function is then used to make a deep comparison between the original data file

and the resultant data file. Since both the compression and encryption algorithms are lossless,

the input and output files should be identical. The purpose of these tests is to determine

quantities associated to each feature of the system which can be used to verify the ATPs and

determine whether the figures of merit have been met indicating a successful system or possible

points for improvement. Particularly the figure of merits outlined in section 2 of part C above.

2.2. Experiments for Compression Block

The compression block was tested across various use cases to determine values that could be

used as comparisons for respective ATPs determined in the paper design. All the tests were

executed across the same three sets of sample data:

• "EEE3097S_2022_Turntable_Example_Data_2.csv"

• "EEE3097S_2022_Turntable_Example_Data.csv"

• "EEE3097S_2022_Walking_Around_Example_Data.csv"

While the tests have peripheral objectives related to the ATPs, the main aim of the compression

block is to reduce the physical space required to store the data whilst retaining all data inside

the file. The Lempel–Ziv–Markov chain algorithm (LZMA) was used for compression. The

original file size is compared to the compressed file size for each sample data set to determine

the compression ratio, this can be used to verify if a compression ratio of at least 1.5 is achieved.

The execution time of the compression and decompression for each sample data set can also

be determined using the Python time library. Lastly, the input and output files are compared

for each sample data set to determine if the compression and decompression are lossless. This

execution time can be used to determine if the compression block meets the figure of merit

number 4 in section 2 of part C above.

2.3. Experiments for Encryption Block

Testing the encryption block consisted of various stages. Testing was done in phases to obtain

values which could then be used for comparisons and verify the respective ATPs. All the tests

were done on the sample data provided by the compression algorithm:

 - 27 -

• "EEE3097S_2022_Turntable_Example_Data_2.csv.lz"

• "EEE3097S_2022_Turntable_Example_Data.csv.lz"

• "EEE3097S_2022_Walking_Around_Example_Data.csv.lz".

While the tests have peripheral objectives related to the ATPs, the primary function of the

encryption block is to convert plaintext data into ciphertext, which cannot trivially be decrypted

without the password. The encryption algorithm used was the Twofish algorithm developed by

Bruce Schneier. The original file was compared to the encrypted file for each file to determine

whether the encryption was successful. The execution time for encryption and decryption of

each data file was determined using the built-in Python time library as means of verifying that

the ATP has been met, specifically the execution time of the algorithm should not exceed 10

seconds per 10 kilobytes of data. Determining if the encryption was lossless was done by

comparing the files provided to the algorithm (the compressed files) and the files following

decryption; this was done to ensure the encryption is lossless as to verify the ATP. The

execution time can be used to determine if the encyrption block meets the figure of merit

number 3 in section 2 of part C above.

2.4. Expected Data to be Retrieved and Returned From Each

Block

The compression block is expected to retrieve IMU data as a CSV file. The compression block

will read the CSV file and output the compressed .lz file. The encryption block will then

retrieve this .lz file and encrypts it into a .lz.tf file. The decryption algorithm will then retrieve

the .lz.tf file and decrypt it into a .lz file. This .lz file is retrieved by the decompression

algorithm, which will output a CSV file.

 - 28 -

3. Results
3.1. Results of Experiments to Check Overall Functionality of

the System

The output for the overall functionality experiment is shown below:

Figure 12 – Command-line output from the overall functionality experiment

The sample data set used for this experiment was

"EEE3097S_2022_Turntable_Example_Data.csv". The uncompressed file has a size of

22429420 bytes and a compressed size of 1488504 bytes – this which means that a compression

ratio of 15.1 was achieved. The compression took 42.58 seconds, and the decompression took

2.67 seconds. The encryption took 5.58 seconds, and the decryption took 5.68 seconds. The

encryption added 8 bytes to the compressed file because the compressed file was not a multiple

of 16 bytes (block size). These 8 bytes acted as padding for the encryption algorithm so that

the file's content was correctly encrypted. The last line output in the figure above shows that

the original file is identical to the decompressed file; therefore, the compression and encryption

are both lossless.

 - 29 -

3.2. Results of Experiments for Compressions Block

The output for the compression experiment is shown below in table form:

Table XIX – Raw results for the compression block experiments

File Original File

Size [bytes]

Compressed

File Size [bytes]

Compression

Time [seconds]

Decompression

Time [seconds]

Turntable_1 22 429 420 1 488 504 41.6755 2.61922

Turntable_2 19 827 842 939 264 30.4814 1.7084

Walking 14 332 601 1 353 856 29.0786 2.7873

The values in the table below were calculated from those in the table above.

Table XX – Calculated results for the compression block experiments

File Compression

Ratio

Compression Speed

[bytes/second]

Decompression Speed

[bytes/second]

Turntable_1 15.0684 538 192.5385 8 563 403.6920

Turntable_2 21.1099776 650 489.8061 11 605 816.5600

Walking 10.58650329 492 891.4608 5 142 029.8360

Average 15.5883 560 624.6018 8 437 083.3630

As can be seen from the results shown in the table above, LZMA appears to be a high-speed

and efficient compression algorithm. These results also clearly show that the decompression

algorithm is significantly more efficient than the compression algorithm. This means that when

the algorithms must be optimized for the STM more effort should be focused on making the

compression more efficient rather than the decompression.

3.3. Results of Experiments for Encryption Block

The output for the encryption experiment is shown below in table form:

Table XXI – Raw results for the encryption block experiments

Compressed

File

Original File

Size [bytes]

Encrypted File

Size [bytes]

Encryption

Time [seconds]

Decryption

Time [seconds]

Turntable_1.lz 1 488 504 1 488 512 5.5718 5.5043

Turntable_2.lz 939 264 939 264 2.2277 2.3134

Walking.lz 1 353 856 1 353 856 4.4566 4.6865

 - 30 -

The values in the table below were calculated from those in the table above.

Table XXII – Calculated results for the encryption block experiments

File Used Padding Encryption Speed

[bytes/second]

Decryption Speed

[bytes/second]

Turntable_1 Yes 267 147.5059 270 425.3578

Turntable_2 No 421 626.4158 406 010.3635

Walking No 303 787.9655 288 885.5455

Average - 330 853.9624 321 773.7556

As seen by the data, we can conclude that Twofish is slightly faster at encrypting files than

decrypting files. It is still, however, a high-speed and efficient algorithm. While the encryption

and decryption speeds are both efficient, the implementation of the algorithms on the STM will

impact the efficiency of the algorithms. This means that the algorithms will have to be

optimized for the STM.

Figure 13 – Decryption using the correct password

Figure 14 – Decryption using an incorrect password

 - 31 -

As can be seen by comparing Figure 10 and Figure 11, the decryption fails when an incorrect

password is provided to the decryption algorithm.

3.4. Effects of Changing the Data Provided to the System

Noise was added to the data points in the "EEE3097S_2022_Turntable_Example_Data.csv" to

determine whether such a change in the data will affect the compression performance or

encryption performance. As seen in the figure below, the performance of both the compression

and encryption has been severely affected compared to the result shown in Figure 9, which

used the original data set.

Figure 15 – Command-line output from the overall functionality experiment with noise

A table presenting the difference in the results between those in section 3.1 and this experiment

is shown below:

Table XXIII – Changes due to adding noise to the data set

 Change in

Input File

Size [bytes]

Change in

Output File

Size [bytes]

Change in

Speed

[bytes/second]

Change in Speed (with

original data set as

baseline) [Percentage]

Compression 4397 7 603 356 165 342.3952 -31.4%

Decompression 7 603 356 4397 6 819 408.5070 -81.3%

Encryption 7 603 356 7 603 360 247 011.6069 -92.6%

Decryption 7 603 360 7 603 356 242 496.0141 -92.5%

 - 32 -

As can be seen, by the severe changes in performance, adding noise to the data set will harm

the performance of both compression and encryption.

4. Simulated Data Acceptance Test

Procedures
4.1. Compression ATPs

Table XXIV – Simulation Data ATPs for the compression block

ATP Description ATP

achieved

Comment

Compression

time

The compression

algorithm must not take

more than 5 seconds per

10 kilobytes of data.

Yes

Table III shows that the

compression algorithm achieved an

average speed of ~560 000 bytes

per second, which is far more than

2048 bytes per second.

Data loss
No data must be lost

during the compression

of the data file.

Yes

LZMA uses lossless compression,

validated by the deep file

comparison in section 3.1.

Compression

effectiveness

The compression ratio of

the original file size and

the compressed file size

must be at least 1.5.

Yes

Table III shows that the

compression algorithm achieved an

average compression ratio of

~15.6, which is far more significant

than 1.5.

 - 33 -

4.2. Encryption ATPs

Table XXV – Simulated Data ATPs for the encryption block

ATP Description ATP achieved Comment

Encryption

time

The encryption and

decryption execution

time should not exceed

10 seconds per 10

kilobytes of data.

Yes

Table V shows that the

encryption algorithm

achieved an average

speed of ~330 000

bytes per second,

surpassing the ATP.

Data loss
No data must be lost

during the encryption

and decryption of the

data file.

Yes

As shown in section

3.1, the compression

and encryption are

both lossless.

Encryption

security

The encryption must be

strong enough to

prevent trivial

decryption.
Yes

This ATP is difficult to

test, but the encryption

prevents trivial

decryption attempts, as

shown in section 3.3,

figures 10 and 11.

Encryption

integrity

The original data in the

file must be identical to

the decrypted data in

the output file.

Yes

As shown in section

3.1, the compression

and encryption are

both lossless.

4.3. Checksum ATPs

Table XXVI – Simulated Data ATPs for the checksum block

ATP Description ATP achieved Comment

STM

checksum

The STM must create a

checksum of the

original data file

successfully.

No

No data collection

from the STM could be

created; therefore, no

checksum.

Client

checksum

The client's device

must successfully

create a checksum of

the decrypted and

decompressed file.

Yes

The checksum for the

client was created

using Python

successfully.

Checksum

comparison

The client's and STM's

checksums must be

identical.

No

Unable to create

checksum on STM.

 - 34 -

F. Validation using the IMU

1. IMU Module
1.1. Additional Features

The system used the ICM-20948 MEMS motion tracking unit provided on the SparkFun 9DoF

IMU Breakout. The ICM-20948 is the same sensor provided by the Sense Hat B. The decision

was made to use only the MEMS motion tracking unit as it provides the system with only the

needed data and requires less setup and configuration to communicate with the STM

microcontroller. The Sense Hat B was provided to the team after successfully communicating

with the ICM-20948 on the SparkFun; therefore, it was decided that we would not be using the

Sense Hat B, although the system can be configured to use either sensor.

The most noticeable feature of using the ICM-20948 was that it consumes significantly less

power when compared to the Sense Hat B, it consumes 2.5mW when all 9-axis sensors are

implemented, since the Sense Hat B has unused additional features which increase its power

consumption. The ICM-20948 has the following specifications as outlined by the data sheet:

• 3-Axis Gyroscope with Programmable FSR of ±250 dps, ±500 dps, ±1000 dps, and ±2000

dps

• 3-Axis Accelerometer with Programmable FSR of ±2g, ±4g, ±8g, and ±16g

• 3-Axis Compass with a wide range to ±4900 µT

• Auxiliary I2 C interface for external sensors

• On-Chip 16-bit ADCs and Programmable Filters

• 7 MHz SPI or 400 kHz Fast Mode I²C

• Digital-output temperature sensor

• MEMS structure hermetically sealed and bonded at wafer level

• RoHS and Green compliant

Since there was no utilisation of all the features of the Sense Hat B since it did not replicate

what will be implemented on the SHARC buoy, the SparkFun 9DoF IMU Breakout would be

the only sensor used for testing the system. The ICM-20948 will provide recordings similar to

what will be used on the SHARC buoy, which is the ICM-20649, as well as containing the

same features (outlined above) as the Sense Hat B and more features than the ICM-20649.

However the ICM-20948 and the ICM-20649 have the same features above with the exception

of the compass being present on the ICM-20948. The 400kHz Fast Mode I2C is beneficial for

this project as it allows for fast testing and communication, this allows for the quick

identification of errors as well uploading new code to the STM.

https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf
https://www.sparkfun.com/products/15335
https://www.sparkfun.com/products/15335
https://www.waveshare.com/wiki/Sense_HAT_(B)
https://invensense.wpenginepowered.com/wp-content/uploads/2021/07/DS-000192-ICM-20649-v1.1.pdf

 - 35 -

1.2. Testing of the IMU ensuring the system can be

extrapolated to the buoy:

The ICM-20948 used for testing the entire system is made by the same company as the ICM-

20649 onboard the SHARC buoy. It was decided to perform all tests solely with the SparkFun

IMU instead of using the Sense Hat B. The SparkFun IMU is a 9-axis sensor, whereas the

ICM-20649 is a 6-axis sensor. Although the experiments in the following sections used all nine

axes provided by the SparkFun IMU, these same results can be extrapolated for using only the

six axes provided by the ICM-20649.

The ICM-20649 only records the gyroscopic and accelerometer data, whereas the SparkFun

IMU records gyroscopic, accelerometer, and magnetic data. There are no other significant

differences between the SparkFun IMU and the one on the SHARC buoy. The SparkFun IMU

provided more data than necessary, and this was done to ensure that the system could be

extrapolated effectively to work on the SHARC buoy. The climate differences could not be

tested since we cannot reproduce the conditions of Antarctica in South Africa.

1.3. Validation test for the IMU module:

Tests were done on the IMU to ensure that the STM was successfully powered on. The

connection between the IMU and the STM was tested using the computer’s serial interface to

ensure the code was run successfully on the STM. The IMU’s data was then collected and

translated from binary to decimal to ensure that the readings were accurate compared to the

ambient surroundings. The IMU was then moved around and placed in different environments

to test if the data set would change, indicating that the sensor was working as expected. This

data was collected and tabulated for comparisons to be made and to verify the success of the

entire system.

Figure 16 – The SparkFun 9DoF IMU Breakout

 - 36 -

The table below shows the IMU first sitting flat on a table. The IMU was then placed so that

its pins were perpendicular to the table, hence measuring gravity’s downwards force on the

sensor’s x-axis. The IMU was then placed so that the pins were parallel to the table, hence

measuring gravity’s downwards force on the sensor’s negative y-axis.

Table XXVII – Raw sensor measurements from the accelerometer

Reading

Group

Time Accel X Accel Y Accel Z

Control

0:00:00.845806 276 40 16451

0:00:01.951676 278 43 16455

0:00:03.057521 281 45 16460

 ⋮ ⋮ ⋮ ⋮

Perpendicular

to table

0:00:11.901786 11842 73 5424

0:00:13.007536 13847 68 3345

0:00:14.112257 15892 73 1250

 ⋮ ⋮ ⋮ ⋮

Parallel to

table

0:00:36.151303 247 -4492 13530

0:00:37.257039 222 -6540 11816

0:00:38.427122 211 -9918 9328

The table below shows the IMU first sitting flat on a table. The IMU was then placed so that

its pins were almost perpendicular to the table; hence the gyroscope’s y-axis changed. The IMU

was then placed so that the pins were parallel to the table; hence the gyroscope’s x-axis

changed.

Table XXVIII – Raw sensor measurements from the gyroscope

Reading

Group

Time Gyro X Gyro Y Gyro Z

Control

0:00:00.325570 2 0 -1

0:00:01.429950 2 1 0

0:00:02.534451 1 1 0

 ⋮ ⋮ ⋮ ⋮

Perpendicular

to table

0:00:04.744082 5 -148 32

0:00:05.848769 4 -151 32

0:00:06.953420 4 -144 32

 ⋮ ⋮ ⋮ ⋮

Parallel to

table

0:00:25.739159 -147 -36 81

0:00:26.844462 -161 58 80

0:00:27.950040 -173 31 79

The table below shows the IMU first sitting flat on a table without a strong magnet in its

vicinity. A magnet was placed directly above the sensor (parallel with the sensor’s z-axis). The

magnet was then placed parallel to the sensor’s pins (parallel with the sensor’s x-axis). Lastly,

the magnet was placed perpendicular to the sensor’s pins (parallel with the sensor’s y-axis).

 - 37 -

Table XXIX – Raw sensor measurements from the magnetometer

Reading

Group

Time Magn X Magn Y Magn Z

Control 0:00:00.647816 -956 -119 44

 ⋮ ⋮ ⋮ ⋮

Magnet on

z-axis

0:00:10.587180 -2338 -588 7831

0:00:11.691698 -2021 -1962 10364

0:00:12.796130 -1763 -3298 12830

 ⋮ ⋮ ⋮ ⋮

Magnet on

x-axis

0:00:33.780674 -1683 -118 451

0:00:34.885170 -2690 -182 717

0:00:35.989632 -3695 -267 888

 ⋮ ⋮ ⋮ ⋮

Magnet on

y-axis

0:00:54.765832 -1056 -446 137

0:00:55.870350 -1151 -1164 290

0:00:56.975013 -1243 -2174 556

 - 38 -

2. Experiment Setup
2.1. Experiments to Check Overall Functionality of the

System

The overall system uses a combination of encryption and compression functions compiled in

C and managed by a python script for execution and testing. A checksum is performed on the

collected sensor data from the IMU (stored on the STM microcontroller temporarily), the

compression block will compress the data, and encryption is performed on the compressed data

before being transmitted to the computer for testing. The encrypted data can then be decrypted

and decompressed to retrieve the original data by passing the encrypted data back to a

secondary STM, which has the decryption and decompression algorithm loaded; the STM will

then perform the subsequent algorithms before returning the original data along with a

checksum (which is generated on the secondary STM) for confirmation of the retrieval and

storage of data to be confirmed – the checksum is used to ensure that the original sensor data

is identical to the resultant data after decompression. Since both the compression and

encryption algorithms are lossless, the input and output files should be identical. The checksum

confirms this – this ensures that the efficiency of the overall setup is 100%.

A timer was used to determine the time taken for the system to collect a block of sensor data

and perform the necessary algorithms on the data before transmission; this test was also

performed on the decompression and decryption to ensure the data processing on the STM

satisfies the requirements. The total time for the overall system to perform the above actions

were used to verify the requirements that the encryption and compression blocks were efficient

and did not exceed the time constraints outlined in the figure of merits. Once decompression

and decryption had been performed, the original size of the sensor data was compared to the

compressed data size to ensure that a compression ratio of at least 1.5 was achieved every

iteration.

2.2. Experiments for Compression Block

Testing was done in phases to obtain values which could then be used for comparisons and

verify the respective ATPs along with determining figures of merit. The compression algorithm

was tested by performing compression on multiple sets of known data generated by a

pseudorandom value generator using a seed. The seed used on the STM and the computer were

the same – hence the data compressed on the STM and the data compressed on the computer

were the same. This was done to validate that the algorithm is working on the STM as it was

on the computer – confirming the algorithm is working as desired before the sensor data is

passed to the compression block. Since the computer runs the same algorithm as the STM, the

output file size and the output data must be the same as the ones returned by the computer.

While the tests have peripheral objectives related to the ATPs, the main aim of the compression

block is to reduce the physical space required to store the data whilst retaining all data inside

the file. It must be emphasised that the tests focused predominantly on the sensor data rather

than the seed data.

 - 39 -

The Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm was used for compression.

The original sensor data set size is compared to the compressed data size for each iteration to

determine the compression ratio – the compression ratio should be at least 1.5. The execution

time of the compression and decompression for each generated data set can be determined via

the same methods used for the overall system; however, in this section, the file size was divided

by the time taken to compression to ensure that at least one kilobyte of data is compressed

every second.

Lastly, the input and output data sets are compared for each sample data set to determine if the

compression and decompression are lossless – the checksum is also used to verify that the data

collected by the sensor as well as the data generated by the STM using the seed is the same as

the data in the output file following decompression. The process described above was repeated

using data collected by the IMU and stored on the STM; the results from the generated data set

were used as a control to verify that the compression block performed as expected.

2.3. Experiments for Encryption Block

Testing the encryption block consisted of various stages. Testing was done in phases to obtain

values which could then be used for comparisons and verify the respective ATPs. The

encryption algorithm was tested by performing encryption on multiple sets of known data

generated by a pseudorandom value generator using a seed. Since the computer used for testing

is a 64-bit processor while the STM microcontroller has a 32-bit processor, the machines'

processors perform substitutions of the data into the S-boxes differently. This raised the issue

that the computer cannot be used to verify the algorithm. To solve this problem, the sensor data

encrypted by the STM is transferred to the client's computer along with the padding length

used for the encryption and the checksum of the sensor data generated by the STM. The client

can then see all the information related to the encryption before sending the data to another

STM for decryption.

The generated data was used to confirm that the algorithm is working as desired before the use

of real-world sensor data– this was done as the generated data remained constant and was easily

repeatable. The time taken for the computer to perform encryption on the generated data was

recorded using a timer. This execution time is used to verify that the encryption block works

as desired. The above process once validated with the generated data, the entire testing

procedure was repeated using sensor data collected by the STM. This was done to show that

the encryption block operates the same with the real world data as it did with known generated

data sets, thus verifying all ATPs and figures of merit and concluding that the encryption block

works as desired.

Since the STM generated a checksum when the data was collected, this checksum can be used

for comparison against the checksum generated following decryption to ensure that the

encryption is lossless and that the client receives all data. While these tests have peripheral

objectives related to the ATPs, the primary function of the encryption block is to convert

plaintext data into ciphertext, which cannot trivially be decrypted without the password. The

encryption algorithm used was a custom modified blowfish algorithm which Bruce Schneier

originally developed – Twofish was unable to be implemented on the hardware of the STM

[4]. Hence, we were forced to revert to Twofish's predecessor, which was designed for

hardware use. The original data was compared to the encrypted data for each data set to

https://en.wikipedia.org/wiki/Lempel-Ziv-Storer-Szymanski
https://www.schneier.com/academic/blowfish/

 - 40 -

determine whether the encryption was successful. The execution time for encryption and

decryption of each data set was determined using a timer. Determining if the encryption was

lossless was done by comparing the raw sensor data provided to the encryption algorithm and

the output data following decryption; the checksum was also used to verify as a secondary

measure. The above information was then used to confirm that the figure of merits were

satisfied to meet the user requirements. The encryption algorithm must be able to encrypt at

least one kilobyte of data per second. As outlined above, the testing procedure for the

compression block is similar to that of the encryption block by using seed generated data and

sensor data, this is done to reliably know that the system passes all figures of merit without

doubt. It must be emphasised that the tests focused predominantly on the sensor data rather

than the seed data.

2.4. Experiments for Checksum Block

Testing the checksum block can be done by providing the CRC32 checksum algorithm with

identical and different data sets and creating a checksum of each. To verify the CRC32

algorithm, a checksum of the sensor data collected by the remote STM is generated and

transmitted with sensor data. Then the client’s device receives the checksum and sensor data

and sends it to their local STM. If the resultant 32-bit checksums of each data set are identical,

then the data set has not changed. However, if the checksums are different, then the data is

different, or in a rare case, the checksum was corrupted during transmission.

2.5. Expected Data to be Retrieved and Returned From Each

Block

The compression block is expected to receive the raw IMU data in binary at a rate of 1 sample

per 500 milliseconds, which will be compressed by executing the compression algorithm on

the collected sensor data. The compressed data will also be binary and stored on the STM. The

compressed binary data will be passed to the encryption block on the STM. The encryption

block will then execute the encryption algorithm to convert the compressed sensor data into

ciphertext before transmission to the client’s computer. The client will then send the encrypted,

compressed data in ciphertext to their STM for decryption. The decryption block will then

execute its algorithm on the data which the client supplies. Following this, the decryption block

will pass the decrypted data (compressed data) in binary to the decompression block, which

will decompress the data so that the client can read the IMU's sensor data.

 - 41 -

3. Results
3.1. Results of Experiments to Check Overall Functionality of

the System

The figures below show the command-line output for a single overall functionality test of the

system. This test was conducted with 132 bytes of collected sensor data. This data was then

passed to the compression block. The compressed data was then passed to the encryption

block, and the encrypted data was transmitted to the user. The above process is shown in

Figure 4 below. The user is then asked if they want to decrypt and decompress the data. The

outputs from the encryption block and compression block is shown in Figure 4 and 5 below.

Figure 17 – STM2 CLI output for the overall functionality experiment Figure 18 – STM1 CLI output for the overall functionality experiment

 - 42 -

The values in the table below were calculated from those in Table LIII in Appendix I.

Table XXX – Results for the overall functionality experiment

Round Compression

Ratio

Compression

Speed

[bytes/second]

Decompression

Speed

[bytes/second]

Encryption

Speed

[bytes/second]

Decryption

Speed

[bytes/second]

1.1 1.294 665.008 807.883 727.433 831.897

1.2 1.245 640.267 804.388 689.078 831.391

1.3 1.245 655.074 770.443 720.387 805.964

2.1 1.320 728.139 827.353 695.717 860.08

2.2 1.361 774.275 844.892 927.553 863.651

2.3 1.375 803.849 852.207 859.268 836.769

3.1 1.424 857.358 863.486 894.743 868.056

3.2 1.385 820.664 849.636 869.187 880.906

3.3 1.424 849.053 864.459 906.367 886.798

4.1 1.397 845.544 865.350 888.901 889.012

4.2 1.500 897.126 866.628 874.943 892.07

4.3 1.571 951.588 872.595 863.740 875.625

5.1 1.650 1012.295 875.206 859.029 882.418

5.2 1.594 994.329 878.370 872.611 897.054

5.3 1.557 944.417 873.552 893.988 890.876

6.1 1.752 1083.560 882.278 895.642 895.933

6.2 1.744 1108.067 879.437 891.838 899.772

6.3 1.808 1122.544 883.668 892.807 884.973

7.1 1.798 1159.310 879.921 914.283 889.902

7.2 1.833 1161.148 884.703 909.643 889.828

7.3 1.763 1106.489 883.994 910.722 904.193

8.1 1.906 1208.282 885.591 911.553 901.437

8.2 1.963 1243.456 890.908 911.941 901.489

8.3 1.985 1272.341 890.942 919.509 899.435

Average 1.579 954.341 861.579 862.537 877.480

 - 43 -

The table below shows the averages for each of the rounds recorded in Table LIII in Appendix

I.

Table XXXI – Average results for the overall functionality experiment

Round Compression

Ratio

Compression

Speed

[bytes/second]

Decompression

Speed

[bytes/second]

Encryption

Speed

[bytes/second]

Decryption

Speed

[bytes/second]

1 1.262 653.449 794.238 823.084 712.299

2 1.352 768.754 841.484 853.500 827.513

3 1.411 842.358 859.194 878.587 890.099

4 1.489 898.086 868.191 885.569 875.861

5 1.600 983.680 875.709 890.116 875.209

6 1.768 1104.724 881.795 893.559 893.429

7 1.798 1142.316 882.873 894.641 911.549

8 1.951 1241.360 889.147 900.787 914.334

Figure 19 – Compression block speed vs input size for overall functionality experiment

 - 44 -

Figure 20 – Encryption block speed vs input size for overall functionality experiment

Figure 21 – Data size vs total computational time for overall functionality experiment

 - 45 -

3.2. Results of Experiments for Compression Block

The values in the table below were calculated from those in Table LIV in Appendix II.

Table XXXII – Calculated results for the compression block experiments

Round Compression

Ratio

Compression Speed

[bytes/second]

Decompression Speed

[bytes/second]

1.1 1.269 658.801 817.186

1.2 1.245 654.944 797.516

1.3 1.200 652.329 806.166

2.1 1.304 760.187 845.934

2.2 1.231 743.014 850.595

2.3 1.313 771.257 835.093

3.1 1.546 940.434 872.979

3.2 1.554 927.021 866.672

3.3 1.702 1024.187 878.978

4.1 1.729 1082.594 884.685

4.2 1.800 1134.745 882.502

4.3 1.692 1058.931 877.195

5.1 1.954 1240.254 889.767

5.2 1.895 1189.047 884.336

5.3 1.909 1218.528 885.485

6.1 1.913 1274.27 892.212

6.2 2.026 1314.271 889.294

6.3 2.007 1302.769 890.199

7.1 2.034 1338.915 891.103

7.2 2.161 1404.943 896.095

7.3 2.011 1323.125 892.74

8.1 2.010 1313.297 896.205

8.2 2.080 1350.629 895.38

8.3 1.990 1328.593 895.107

9.1 2.190 1451.194 898.841

9.2 2.013 1340.257 896.556

9.3 2.079 1392.739 897.063

10.1 2.249 1497.538 901.686

10.2 2.229 1482.645 900.714

 - 46 -

10.3 2.012 1324.798 896.501

Average 1.812 1149.875 876.826

The table below shows the averages for each of the rounds recorded in Table LIV in Appendix

II.

Table XXXIII – Average results for the compression block experiment

Round Compression

Ratio

Compression Speed

[bytes/second]

Decompression Speed

[bytes/second]

1 1.238 655.358 806.956

2 1.283 758.153 843.874

3 1.601 963.881 872.876

4 1.741 1092.090 881.461

5 1.919 1215.943 886.529

6 1.982 1297.103 890.568

7 2.068 1355.661 893.312

8 2.027 1330.840 895.564

9 2.094 1394.730 897.487

10 2.163 1434.994 899.634

Figure 22 – Compression block computational speed versus input data size

 - 47 -

The graph above indicates that the compression algorithm is more efficient than the

decompression algorithm because as the size of the input data increases, the computational

speed of the compression algorithm increases, reducing the system's total run time per block

of sensor data. Whereas the decompression speed remains essentially constant, increasing the

system's total run time per block of sensor data.

3.3. Results of Experiments for Encryption Block

The values in the table below were calculated from those in Table LV in Appendix III.

Table XXXIV – Calculated results for the encryption block experiments

Round Padding Length

[bytes]

Encryption Speed

[bytes/second]

Decryption Speed

[bytes/second]

1.1 6 890.065 845.527

1.2 6 915.099 840.346

1.3 6 887.749 839.317

2.1 4 887.230 888.343

2.2 4 901.056 888.372

2.3 4 909.194 878.422

3.1 2 909.848 881.803

3.2 2 900.580 892.961

3.3 2 905.814 895.283

4.1 0 900.016 892.848

4.2 0 896.782 902.672

4.3 0 896.916 899.814

5.1 6 923.521 904.785

5.2 6 923.125 906.956

5.3 6 913.801 900.247

6.1 4 915.181 905.879

6.2 4 918.993 904.178

6.3 4 918.240 906.696

7.1 2 910.489 910.354

7.2 2 913.016 909.743

7.3 2 913.605 907.322

8.1 0 912.585 908.789

8.2 0 913.119 911.528

8.3 0 909.700 906.428

 - 48 -

9.1 6 920.522 907.335

9.2 6 921.796 911.689

9.3 6 917.932 908.150

10.1 4 921.302 911.882

10.2 4 918.424 910.872

10.3 4 920.881 913.040

Average - 910.219 896.386

The table below shows the averages for each of the rounds recorded in Table LV in Appendix

III.

Table XXXV – Average results for the encryption block experiment

Round Encryption Speed [bytes/second] Decryption Speed [bytes/second]

1 897.638 841.730

2 899.160 885.046

3 905.414 890.016

4 897.905 898.445

5 920.149 903.996

6 917.471 905.584

7 912.370 909.140

8 911.801 908.915

9 920.084 909.058

10 920.202 911.931

 - 49 -

Figure 23 – Encryption block computational speed versus input data size

The graph above implies that as the size of the supplied data increases, the decryption and

encryption speeds tend towards each other at about 915 bytes per second.

3.4. Results of Experiments for Checksum Block

The results for the checksum block experiments are shown below in table form.
Table XXXVI – Raw results for the checksum block experiments

Round Data size STM 1

Checksum

STM 2

Checksum

Average generation

time [ms]

1 66 ea 54 a9 d5 ea 54 a9 d5 0.015

2 550 e5 a3 0b 4a e5 a3 0b 4a 0.017

3 1034 bd 09 cb ed bd 09 cb ed 0.019

4 1518 93 1b bb fe 93 1b bb fe 0.022

5 2002 f6 18 aa 7f f6 18 aa 7f 0.024

6 2486 54 9d 79 3e 54 9d 79 3e 0.025

7 2970 5b f5 85 87 5b f5 85 87 0.029

 - 50 -

8 3454 df 1b ae a0 df 1b ae a0 0.030

9 3938 0e 81 35 20 0e 81 35 20 0.033

10 4422 8c 39 d4 b7 8c 39 d4 b7 0.035

The checksums for every round match; therefore, the original sensor data matches the data

received by the second STM. The values in the table below were calculated from those in the

table above.
Table XXXVII – Average checksum generation speed for checksum algorithm

Round Average generation speed [bytes/second]

1 4 400 000

2 32 400 000

3 54 400 000

4 69 000 000

5 83 400 000

6 99 400 000

7 102 000 000

8 115 000 000

9 119 000 000

10 126 000 000

To demonstrate the effectiveness of the checksum algorithm, the table below shows the effect

when the data is changed, causing STM2 to generate a different checksum.

Table XXXVIII – Raw results for the checksum block experiments

Data size STM 1 Checksum STM 2 Checksum

66 74 51 92 4d 96 d1 38 a7

2002 fd 63 fa be 73 25 6a b6

4422 f3 fa 5f 39 a7 30 0d 27

Only the first byte of each data set was changed after the sensor data was transmitted to the

second STM before checksum generation, and even due to such a minuscule change, the

checksums do not match. This shows how the checksum can be used reliably to indicate

whether the algorithms are lossless and that no data is lost during transmission between the

STMs and the client. However, if, during transmission, the checksum is affected (i.e., a single

bit flips), then the checksum would indicate that the transmitted data has changed even though

it may still be unchanged.

 - 51 -

3.5. Effects of Changing the Data Provided to the System

3.5.1. Under Sampling Experiment

The CLI output of under sampling the data provided to the system is shown below.

STM1 was told to sample 132 bytes of sensor data,. However, it was forced only to sample 88

bytes of data to simulate under-sampling.

The table below shows a comparison between the results from the under-sampling experiment

and the results from section 3.1. for compression.

Table XXXIX – Under-sampling experiment compression results

 Uncompressed

data size [bytes]

Compressed

data size [bytes]

Compression

time [ms]

Decompression

time [ms]

Original 132 103 189.000 155.795

Under-

sampled
132 74 139.111 153.784

Figure 25 – STM2 CLI output for the under-sampling experiment Figure 24 – STM1 CLI output for the under-sampling experiment

 - 52 -

As seen from the table above, the under-sampling caused the compressed data to reduce the

compressed data size due to more values in the buffer being null. The under-sampling also

decreased the compression time because more values were null. However, the decompression

remained essentially constant because the algorithm still had to expand the data to 132 bytes.

The table below shows a comparison between the results from the under-sampling experiment

and the results from section 3.1. for encryption.

Table XL – Under-sampling experiment encryption results

 Decrypted data

size [bytes]

Encrypted data

size [bytes]

Encryption time

[ms]

Decryption time

[ms]

Original 103 104 118.489 117.606

Under

sampled
74 80 93.338 85.690

Since the size of both the decrypted data and encrypted data changed, there should be a change

in the encryption and decryption time. This behaviour was observed as shown in the table

above.

 - 53 -

3.5.2. High Sampling Rate Experiment

The CLI output for sampling sensor data at a rate of one sample per 100 milliseconds is shown

below.

The table below compares the results from the increased sampling rate experiment and the

results from section 3.1. for compression.
Table XLI – Increased sampling rate experiment compression results

 Uncompressed

data size [bytes]

Compressed

data size [bytes]

Compression

time [ms]

Decompression

time [ms]

Original 132 103 189.000 155.795

Fast

sampling
132 98 185.240 157.531

As seen from the table above, sampling the sensor data at an increased rate decreased the

compressed data size from 103 to 98 bytes. This means that more repetitive sequences in the

sensor data were found. The compression and decompression took essentially the same length

of time to run to completion.

Figure 26 – STM2 CLI output for increased sensor sampling rate

experiment

Figure 27 – STM1 CLI output for increased sensor sampling rate

experiment

 - 54 -

The table below compares the results from the increased sampling rate experiment and the

results from section 3.1. for encryption.

Table XLII – Increased sampling rate experiment encryption results

 Decrypted data

size [bytes]

Encrypted data

size [bytes]

Encryption time

[ms]

Decryption time

[ms]

Original 103 104 118.489 117.606

Under

sampled
98 104 118.252 112.211

As seen from the table above, the increased sampling rate did not significantly affect the

encryption algorithm.

3.5.3. Gaussian Noise Experiment

The CLI output for adding Gaussian noise to the sensor data is shown below.

Figure 29 – STM2 CLI output for gaussian noise experiment Figure 28 – STM1 CLI output for gaussian noise experiment

 - 55 -

The table below compares the results from the gaussian noise experiment and the results from

section 3.1. for compression.

Table XLIII – Gaussian noise experiment compression results

 Uncompressed

data size [bytes]

Compressed

data size [bytes]

Compression

time [ms]

Decompression

time [ms]

Original 132 103 189.000 155.795

Gaussian

Noise
132 120 198.368 159.722

As seen from the table above, adding Gaussian noise to the sensor data increased the

compressed data size from 103 to 120 bytes and slightly increased the compression time and

decompression time. This is because compression looks for repetitive values while

compressing to reduce the overall size of the data. Since noise is added to the input data set,

fewer values will be repetitive. Hence the algorithm will not be as effective as one with less or

no noise in the sensor data.

The table below compares the results from the gaussian noise experiment and the results from

section 3.1. for encryption.

Table XLIV – Gaussian noise experiment encryption results

 Decrypted data

size [bytes]

Encrypted data

size [bytes]

Encryption time

[ms]

Decryption time

[ms]

Original 103 104 118.489 117.606

Gaussian

Noise
120 120 136.115 134.875

As the table above shows, adding Gaussian noise to the sensor data increased the encryption

and decryption computation times. The Gaussian noise affected the substitution in the S-boxes;

the algorithm took longer to process the data blocks since the data was more random. The same

effect occurred with decryption, as the algorithm took longer to process the substituted blocks

of data. The compressed size of the data set also increased; this, in turn, also affects the

algorithm's speed.

 - 56 -

4. Practical Data Acceptance Test

Procedures
4.1. Compression ATPs

Table XLV – Practical data ATPs for the compression block

ATP Description ATP

achieved

Comment

Compression

time

The compression

algorithm must not take

more than 5 seconds per

10 kilobytes of data.

(2 kilobytes per second)

NO

The decompression and compression

fails to meet the ATP requirement, this

is shown by one of the calculations

done to verify the working of the

compression algorithm.

Data loss
No data must be lost

during the compression

of the data file.

YES

The checksum indicates that the entire

system is lossless and therefore the

compression block must be lossless.

Compression

effectiveness

The compression ratio of

the original file size and

the compressed file size

must be at least 1.5.

YES

As indicated in table VII, the

compression was at least 1.5 or higher

when the rounds were greater than 3.

Compression Time Calculation:

To decompress 1012 bytes, it will take 1122.388ms. This indicates that it will take 2.218s to

decompress 2 kilobytes of data – this fails to meet the ATP.

4.2. Encryption ATPs

Table XLVI – Practical data ATPs for the encryption block

ATP Description ATP

achieved

Comment

Encryption

time

The encryption and

decryption execution time

should not exceed 10 seconds

per 10 kilobytes of data.

NO

The encryption and decryption

took longer than what was

outlined by the ATP requirement.

Data loss
No data must be lost during

the encryption and decryption

of the data file.
YES

The checksum indicates that the

entire system is lossless and

therefore the encryption block

must be lossless.

Encryption

security

The encryption must be

strong enough to prevent

trivial decryption.
YES

Since the key is static and known

only by the client and the STMs. It

will only be possible for the client

to be able to decrypt.

Encryption

integrity

The original data in the file

must be identical to the

decrypted data in the output

file.

YES

The checksum was used to verify

the data received by the client

following decryption is identical

to the data collected by the STM.

 - 57 -

4.3. Checksum ATPs

Table XLVII - Practical data ATPs for the checksum block

ATP Description ATP achieved Comment

STM

checksum

The STM must create a

checksum of the

original sensor data

successfully.

YES

As can be seen in section

3.4., the checksum

algorithm successfully

generates a checksum on

the first STM.

Client

checksum

The client's STM must

successfully create a

checksum of the

decrypted and

decompressed data.

YES

As can be seen in section

3.4., the checksum

algorithm successfully

generates a checksum on
the client’s STM.

Checksum

comparison
The two STMs must

generate identical

checksums.

YES

As can be seen by the

results shown in

section 3.1. and 3.4.,

the checksums are

identical

4.4 New Specifications

4.4.1. Compression ATP
Table XLVIII – new specification for compression algorithm vs old specification

ATP Old Version New Version

Compression

time

The compression algorithm

must not take more than 5

seconds per 10 kilobytes of

data.

(2 kilobytes per second)

The compression algorithm must not

take longer than 1 second to execute on

half a kilobyte of data.

4.4.2. Encryption ATP
Table XLIX – new specification for encryption algorithm vs old specification

ATP Old Version New Version

Encryption

time

The encryption and

decryption execution time

should not exceed 10

seconds per 10 kilobytes of

data.

The encryption algorithm must not take

longer than 1 second to execute on half a

kilobyte of data.

 - 58 -

G. Consolidation of ATPs & Future

Plans

1.1. All the ATPs for the entire system

Table L – ATPs for entire system

ATP Description ATP achieved

Compression time
The compression algorithm must not take more

than 5 seconds per 10 kilobytes of data.

(2 kilobytes per second)
NO

Data loss
No data must be lost during the compression of

the data file.
YES

Compression

effectiveness

The compression ratio of the original file size

and the compressed file size must be at least

1.5.

YES

Encryption time
The encryption and decryption execution time

should not exceed 10 seconds per 10 kilobytes

of data.
NO

Data loss
No data must be lost during the encryption and

decryption of the data file. YES

Encryption security
The encryption must be strong enough to

prevent trivial decryption.
YES

Encryption integrity
The original data in the file must be identical to

the decrypted data in the output file. YES

STM checksum The STM must create a checksum of the

original sensor data successfully.
YES

Client checksum
The client's STM must successfully create a

checksum of the decrypted and decompressed

data.

YES

Checksum comparison The two STMs must generate identical

checksums.
YES

For the compression and encryption time, it was calculated that the compression and encryption

blocks took slightly longer to execute and hence the ATP was not achieved. It was therefore

decided that the specifications had to change in order for all ATPs to be met and deem the

system a success.

 - 59 -

1.2 New Specifications

1.1.1. Compression ATP
Table LI – new specification for compression algorithm vs old specification

ATP Old Version New Version

Compression

time

The compression algorithm

must not take more than 5

seconds per 10 kilobytes of

data.

(2 kilobytes per second)

The compression algorithm must not

take longer than 1 second to execute on

half a kilobyte of data.

1.1.2. Encryption ATP
Table LII – new specification for encryption algorithm vs old specification

ATP Old Version New Version

Encryption

time

The encryption and

decryption execution time

should not exceed 10

seconds per 10 kilobytes of

data.

The encryption algorithm must not take

longer than 1 second to execute on half a

kilobyte of data.

1.3 Future Plans

The final product is deemed to be successful and we are happy with what we have produced

despite the issues faced. The system works as desired at the time of writing the report and

requires no additional work however if it is desired to not need an additional STM

microcontroller for decompression or decryption which is external to the SHARC buoy, then

a computer with a 32-bit ARM processor is required. There could be modifications for the

system to be compatible with a 64-bit ARM processor however it was deemed unnecessary by

the team since it was not a requirement for the compression and encryption to take place on

the SHARC buoy while the decryption and decompression must exclusively take place on the

clients computer; this would require additional features which could be costly and hard to

implement in reality. The members of the design team also agreed that the size of storage

onboard the STM could be increased in future to allow for larger data sets to be transferred at

a time and allow for a stronger encryption. The system as it stands is automated by the use of

python software and requires human input before the next step to proceed, this does not require

more work however in the future a Graphical User Interface (GUI) can be implemented in

order to make the system more user friendly.

The group is very satisfied with implementing both the compression and encryption on the

STM microcontroller in the language of C as this is the most power and size efficient language

as it does not require additional libraries or plug ins for the system to operate. In the future

however, it would be beneficial to test and implement a battery system to determine how long

the system will run for and possibly evaluate other methods of decreasing power consumption

– as this was not tested.

Since the purpose of this system is to be able to decrease the size of the data and encrypt it for

transmission over Iridium (a satellite communication network), the automation of the

transmission was not implemented during this phase and would need to be considered before

implementation on the SHARC buoy.

 - 60 -

H. Conclusion

The team was able to implement compression and encryption successfully on the ARM based

STM microcontroller. During the initial phase of analysing the requirements outlined in the

brief, it was deemed pertinent by the group that the system be able to compress, encrypt,

decrypt, decompress while maintaining efficient power consumption on the STM32F051

Discovery Board. It was also required that the data be collected by the use of a motion tracking

device and that at least 25% of the lower Fourier coefficients are maintained; this was achieved

by using lossless lightweight encryption and compression algorithms.

Initially it was decided by the group after research into various encryption and compression

algorithms that Twofish would be used for the encryption block and LZMA for the

compression block. These encryption algorithms were chosen as they were deemed the most

reliable and would be most likely to result in a successful system which meets all user

requirements. The group had to identify possible shortfalls when making the decision on which

algorithm would be used – factors like the fixed-point ARM processor restricting some of the

algorithms and the limited memory and RAM. These bottle necks were identified early on to

help direct the project towards success.

The requirements made by the client were used to determine functional requirements and

design specifications, which would be used to determine the systems outputs as well as

functions as a means of providing the client a satisfactory product. The requirements were used

to determine the acceptance test procedures which are a means of determining a successful

implementation of a sub system and sub-subsystem; an example being the execution time of

the algorithm should not exceed 10 seconds per 10 kilobytes of data.

The group did initial analysis and testing with simulated data provided by our tutor, Humphrey

Chiramba. The group tested three different data sets, each of different sizes, and different file

formats in order to determine if the algorithms chosen could work on the computer – the group

opted to use python’s built in library for compression and encryption. This was done to gauge

the efficiency and speeds of the algorithms and gather data to ensure that the user requirements,

acceptance test procedures, and figures of merit have been met before implementation on the

STM microcontroller. The results of the simulated data indicated that the chosen algorithms

work as desired.

During physical implementation on the STM microcontroller, the group began by interfacing

with the SparkFun IMU-20948; this IMU closely resembled what would be used in Antarctica

and hence provided a suitable data for testing. It was during this phase of testing that the group

identified significant issues with the compression and encryption algorithms. It was concluded

that since the algorithms were being implemented in C rather than python and that the processor

of the STM being different to the computer used; alternative algorithms must be used. It was

then decided to replace Twofish with a modified blowfish algorithm for encryption and LZMA

to LZSS for compression. The results following implementation on the STM indicated that the

project overall was successful however it also resulted in two of the acceptance test procedures

not being met which resulted in revision and consolidation of the ATPs.

Overall the entire project was deemed a great success, despite the limitations faced the group

was able to provide a system which met all user requirements and is something the team is

proud of making.

 - 61 -

I. References

[1] IBM, “Transaction Processing Facility Enterprise Edition,” 05 March 2021. [Online].

Available: https://www.ibm.com/docs/en/ztpf/1.1.0.14?topic=concepts-symmetric-

cryptography. [Accessed 17 August 2022].

[2] National Institute of Standards and Technology (NIST), “NIST Technical Series

Publications,” 26 November 2001. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf. [Accessed 18 August 2022].

[3] K. Meghna, “Geeks for Geeks,” Geeks for Geeks, 24 February 2022. [Online]. Available:

https://www.geeksforgeeks.org/block-cipher-modes-of-operation/?ref=lbp. [Accessed

18 August 2022].

[4] B. Schneier, “Schneier on Security,” [Online]. Available:

https://www.schneier.com/academic/blowfish/. [Accessed 18 August 2022].

[5] B. Schneier, “Schneier on Security,” December 1998. [Online]. Available:

https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html.

[Accessed 18 August 2022].

[6] Geeks For Geeks, “Difference between Lossy Compression and Lossless Compression,”

Geeks For Geeks, 8 June 2020. [Online]. Available:

https://www.geeksforgeeks.org/difference-between-lossy-compression-and-lossless-

compression/. [Accessed 17 August 2022].

[7] L. F. Buenavida, “Crunch Time: 10 Best Compression Algorithms,” DZone, 28 May

2020. [Online]. Available: https://dzone.com/articles/crunch-time-10-best-compression-

algorithms. [Accessed 17 August 2022].

[8] D. Budhrani, “How data compression works: exploring LZ77,” Towards Data Science,

12 September 2019. [Online]. Available: https://towardsdatascience.com/how-data-

compression-works-exploring-lz77-3a2c2e06c097. [Accessed 17 August 2022].

[9] E. Chen, “Understanding zlib,” January 2019. [Online]. Available:

https://www.euccas.me/zlib/#deflate_lz77. [Accessed 17 August 2022].

[10] M. Rodeh, V. R. Pratt and S. Evan, “Linear Algorithm for Data Compression via String

Matching,” Association for Computing Machinery, vol. 28, no. 1, pp. 16-24, 1981.

[11] J. A. Storer and T. G. Szymanski, “Data compression via textual substitution,”

Association for Computing Machinery, vol. 29, no. 4, pp. 928-951, 1982.

[12] L. P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3,” May

1996. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc1951#section-4.

[Accessed 17 August 2022].

[13] Google, “GitHub Brotli,” GItHub, 11 October 2013. [Online]. Available:

https://github.com/google/brotli. [Accessed 18 August 2022].

 - 62 -

J. Appendixes

I. Raw Results for Table XXX & XXXI
The raw results for all the overall functionality tests are shown in the table below.

Table LIII – Raw results for the overall functionality experiment

Round Data

Size

[bytes]

Compressed

Data Size

[bytes]

Encrypted

Data Size

[bytes]

Compression

Time [ms]

Decompression

Time [ms]

Encryption

Time [ms]

Decryption

Time [ms]

1.1 66 51 56 99.247 81.695 67.316 76.983

1.2 66 53 56 103.082 82.050 67.357 81.268

1.3 66 53 56 100.752 85.665 69.482 77.736

2.1 132 100 104 181.284 159.545 120.919 149.486

2.2 132 97 104 170.482 156.233 120.419 112.123

2.3 132 96 96 164.210 154.892 114.727 111.723

3.1 198 139 144 230.942 229.303 165.888 160.940

3.2 198 143 144 241.268 233.041 163.468 165.672

3.3 198 139 144 233.201 229.045 162.382 158.876

4.1 264 189 192 312.225 305.079 215.970 215.997

4.2 264 176 176 294.273 304.629 197.294 201.156

4.3 264 168 168 277.431 302.546 191.863 194.503

5.1 330 200 200 325.992 377.054 226.650 232.821

5.2 330 207 208 331.882 375.696 231.870 238.365

5.3 330 212 216 349.422 377.768 242.458 241.614

6.1 396 226 232 365.462 448.838 258.948 259.032

6.2 396 227 232 357.379 450.288 257.843 260.137

6.3 396 219 224 352.770 448.132 253.115 250.894

7.1 462 257 264 398.513 525.047 296.662 288.751

7.2 462 252 256 397.882 522.209 287.696 281.429

7.3 462 262 264 417.537 522.628 291.973 289.880

8.1 528 277 280 436.984 596.212 310.615 307.168

8.2 528 269 272 424.623 592.654 301.723 298.265

8.3 528 266 272 414.983 592.631 302.412 295.810

 - 63 -

II. Raw Results for Table XXXII &

XXXIII
The results for the compression block experiments are shown below in table form.

Table LIV – Raw results for the compression block experiment

Round Uncompressed

data size [bytes]

Compressed

data size [bytes]

Compression

time [ms]

Decompression

time [ms]

1.1 66 52 100.182 80.765

1.2 66 53 100.772 82.757

1.3 66 55 101.176 81.869

2.1 176 135 231.522 208.054

2.2 176 143 236.873 206.914

2.3 176 134 228.199 210.755

3.1 286 185 304.115 327.614

3.2 286 184 308.515 329.998

3.3 286 168 279.246 325.378

4.1 396 229 365.788 447.617

4.2 396 220 348.977 448.724

4.3 396 234 373.962 451.439

5.1 506 259 407.981 568.688

5.2 506 267 425.551 572.181

5.3 506 265 415.255 571.438

6.1 616 322 483.414 690.419

6.2 616 304 468.701 692.684

6.3 616 307 472.839 691.980

7.1 726 357 542.230 814.721

7.2 726 336 516.747 810.182

7.3 726 361 548.701 813.227

8.1 836 416 636.566 932.822

8.2 836 402 618.971 933.682

8.3 836 420 629.237 933.967

9.1 946 432 651.877 1052.466

9.2 946 470 705.835 1055.149

9.3 946 455 679.237 1054.552

 - 64 -

10.1 1012 450 675.776 1122.342

10.2 1012 454 682.564 1123.553

10.3 1012 503 763.890 1128.833

III. Raw Results for Table XXXIV &

XXXV
The results for the encryption block experiments are shown below in table form.

Table LV – Raw results for the encryption block experiment

Round Decrypted data

size [bytes]

Encrypted data

size [bytes]

Encryption time

[ms]

Decryption time

[ms]

1.1 66 72 85.154 80.893

1.2 66 72 85.679 78.680

1.3 66 72 85.784 81.104

2.1 132 136 153.094 153.286

2.2 132 136 153.089 150.934

2.3 132 136 154.823 149.583

3.1 198 200 226.808 219.817

3.2 198 200 223.974 222.079

3.3 198 200 223.393 220.796

4.1 264 264 295.683 293.328

4.2 264 264 292.465 294.386

4.3 264 264 293.394 294.342

5.1 330 336 371.359 363.825

5.2 330 336 370.470 363.981

5.3 330 336 373.231 367.695

6.1 396 400 441.560 437.072

6.2 396 400 442.391 435.259

6.3 396 400 441.162 435.616

7.1 462 464 509.692 509.616

7.2 462 464 510.034 508.206

7.3 462 464 511.395 507.878

8.1 528 528 580.993 578.576

8.2 528 528 579.247 578.238

 - 65 -

8.3 528 528 582.506 580.411

9.1 594 600 661.277 651.804

9.2 594 600 658.119 650.903

9.3 594 600 660.684 653.643

10.1 660 664 728.164 720.719

10.2 660 664 728.972 722.978

10.3 660 664 727.241 721.049

	Table of Figures
	List of Tables
	i. Individual Contributions
	ii. Project Management Tool
	iii. Development Timeline
	iv. GitHub Link

	1. Interpretation of the requirements
	2. Comparison of encryption algorithms
	3. Comparison of compression algorithms
	4. Feasibility analysis
	5. Possible bottlenecks
	1. Subsystem Design
	1.1 Subsystem and Sub-subsystems Requirements and Specifications
	1.1.1 Retrieval & Storage of Data
	1.1.2 Data Processing
	1.1.3 Encryption of data
	1.1.4 Compression of Data
	1.1.5 Transmission of Data
	1.1.6 Checksum

	1.2 Inter-Subsystem and Inter-Sub-subsystems Interactions
	1.3 UML or OP Diagrams

	2. Acceptance Test Procedure
	2.1 Figures of Merit
	2.2 Experiment Design of ATPs
	2.2.1 Experiment Design to Test the Compression ATPs
	2.2.2 Experiment Design to Test the Encryption ATPs
	2.2.3 Experiment Design to Test the Checksum & Transmission of Data ATPs

	2.3 Acceptable Performance Definition
	2.3.1 Compression subsystem
	2.3.2 Encryption subsystem
	2.3.3 Checksum subsystem

	1. Data
	1.1. Data Used
	1.2. Justification of Data Used
	1.3. Initial Analysis of Data

	2. Experiment Setup
	2.1. Experiments to Check Overall Functionality of the System
	2.2. Experiments for Compression Block
	2.3. Experiments for Encryption Block
	2.4. Expected Data to be Retrieved and Returned From Each Block

	3. Results
	3.1. Results of Experiments to Check Overall Functionality of the System
	3.2. Results of Experiments for Compressions Block
	3.3. Results of Experiments for Encryption Block
	3.4. Effects of Changing the Data Provided to the System

	4. Simulated Data Acceptance Test Procedures
	4.1. Compression ATPs
	4.2. Encryption ATPs
	4.3. Checksum ATPs

	1. IMU Module
	1.1. Additional Features
	1.2. Testing of the IMU ensuring the system can be extrapolated to the buoy:
	1.3. Validation test for the IMU module:

	2. Experiment Setup
	2.1. Experiments to Check Overall Functionality of the System
	2.2. Experiments for Compression Block
	2.3. Experiments for Encryption Block
	2.4. Experiments for Checksum Block
	2.5. Expected Data to be Retrieved and Returned From Each Block

	3. Results
	3.1. Results of Experiments to Check Overall Functionality of the System
	3.2. Results of Experiments for Compression Block
	3.3. Results of Experiments for Encryption Block
	3.4. Results of Experiments for Checksum Block
	3.5. Effects of Changing the Data Provided to the System
	3.5.1. Under Sampling Experiment
	3.5.2. High Sampling Rate Experiment
	3.5.3. Gaussian Noise Experiment

	4. Practical Data Acceptance Test Procedures
	4.1. Compression ATPs
	4.2. Encryption ATPs
	4.3. Checksum ATPs
	4.4 New Specifications
	4.4.1. Compression ATP
	4.4.2. Encryption ATP

	1.1. All the ATPs for the entire system
	1.2 New Specifications
	1.1.1. Compression ATP
	1.1.2. Encryption ATP

	1.3 Future Plans

	I. Raw Results for Table XXX & XXXI
	II. Raw Results for Table XXXII & XXXIII
	III. Raw Results for Table XXXIV & XXXV

