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Chapter 1

Introduction

1.1 Background

Environmental monitoring is a vital aspect of wildlife research and conservation. Collecting data in
natural environments is critical for assessing changes in environmental conditions, detecting pollutants,
monitoring habitat health and drawing correlations between the environment and animal behaviour.
Wireless Sensor Networks (WSNs) are the leading technology when it comes to implementing environ-
mental monitoring systems. These networks deploy distributed sensor nodes that collect environmental
data and support wireless transmission and communication. WSNs are inherently, flexible, scalable,
and efficient, making them a perfect technology to be employed in remote areas with unpredictable
weather conditions.

1.2 Problem Statement

We interviewed Dr. Chris Vennum, a wildlife movement ecologist, specialising in the research of large
African raptors. Dr. Vennum wishes to monitor the environmental conditions at various raptor nesting
sites in order to further understand how different nesting sites affect the environmental conditions
around the site. Additionally, careful monitoring of such conditions gives Dr. Vennum further insight
into the behaviour and well-being of the raptors.

The core challenges in conducting such research is that the various nesting sites are kilometers apart
from one another, in remote areas without internet access. Additionally the nesting sites are in difficult
to reach areas that cannot be frequently visited due to safety concerns as well as to not disturb the
raptors. Dr. Vennum needs a way to monitor the environmental conditions at nesting sites and be
able to access the data from the sites remotely and simultaneously.

To solve this problem, we propose Enviro-Sense, an environmental monitoring system that implements
a wireless sensor network (WSN). This system contains sensor nodes that monitor environmental
conditions at the nesting sites and streams their collected data to a nearby local rendezvous node
where the data is packaged and streamed over long distance wireless communication to an off-site base
station. The base station stores the data in a hybrid local-cloud storage database. We have developed
an API for the database and an intuitive front-end user interface to allow researchers to access the
data remotely.

1



1.3. Scope & Limitations

1.3 Scope & Limitations

The system we have developed acts as a prototype for a potential real-world implementation. Due to
budget constraints we have simplified the system to simulate the desired functionality with components
that would likely need to be upgraded in the future. In our WSN prototype, we have chosen to use
Wi-Fi as the communication technology instead of long-distance radio communication. This decision
was primarily driven by budget constraints, as Wi-Fi components are more cost effective and readily
available compared to specialized long-distance radio communication modules. By using Wi-Fi we can
effectively simulate the desired communication functionality. However, it is important to note that
Wi-Fi generally has a much shorter communication range than long-distance radio communication. As
a result, the prototype’s communication is confined to a small area around the WSN nodes, and hence
is not suitable for large-scale deployments without upgrading to a long-distance radio communication
module in the future.

1.4 Report Outline

This report is organized into the following sections:

1. Introduction:

• This section provides the background information, problem statement, and scope and
limitations of the report.

2. Literature Review:

• In this section, we review the existing literature and research related to environmental
monitoring systems, wireless sensor networks, and their applications in wildlife research and
conservation. We also discuss relevant hardware and software used in such applications.

3. Efficient Communication & Seamless User Interface:

• In this section, we provide detailed descriptions of the implementation of communication
and the user interface for Enviro-Sense, as well as various tests used to verify the operation
of these subsystems within Enviro-Sense.

4. Hybrid Local-Cloud Database:

• In this section, we provide detailed descriptions of the implementation database architecture
and corresponding API used with the local and cloud databases. We also provide various
tests used to verify the operation of this subsystem of Enviro-Sense.

5. Reliable Sensor Node, Data Acquisition & Transmission:

• In this section, we provide detailed descriptions of the implementation of the sensors used
in Enviro-Sense, validation of sensor data, and sensor node power optimizations. We also
provide various tests used to verify the operation of this subsystem of Enviro-Sense.

6. Power Supply:

2
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• In this section, we provide detailed descriptions of the implementation of the method
of providing power to the nodes in Enviro-Sense, as well as descriptions of the various
components used. We also provide various tests used to verify the operation of this
subsystem of Enviro-Sense.

7. Conclusions:

• This section summarizes the findings and conclusions from the research and implementation
of the Enviro-Sense system.

8. Recommendations:

• Here, recommendations are provided for future enhancements, improvements, and potential
applications of the Enviro-Sense system.
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Chapter 2

Literature Review

2.1 Environmental Monitoring Technology

2.1.1 Importance of Environmental Monitoring

Environmental monitoring plays an important role in wildlife research. Gathering environmental
data aids researchers in understanding wildlife behaviour patterns, and the quality of habitats and
contributes to the furtherment of conservation efforts. Numerous sensors are available for collecting
essential environmental data. Some examples of environmental sensors are thermistors to measure
temperature, hygrometers to assess moisture content in the air and soil, and air quality sensors to
evaluate airborne pollutants [4]. To meet the needs of researchers, environmental monitoring systems
must be able to gather data from multiple sensors located at various sites, as well as store and allow
remote access to the collected data.

2.1.2 Wireless Sensor Networks (WSN)

A wireless sensor network (WSN) consists of a collection of interconnected sensor nodes containing
wireless devices that can collect and process data [5]. The nodes transmit their data over a wireless
channel to a central storage facility and can often communicate amongst each other as well [4].
WSNs have become a go-to approach for environmental monitoring systems thanks to the continuous
advancement of big data storage, computational capability, miniature electronics, and ubiquitous
internet connectivity [6].

2.1.3 Environmental Sensor Networks (ESN)

In this paper, we define an environmental sensor network (ESN) as an implementation of a WSN
specific to environmental monitoring. An ESN is a system of interconnected sensors that are designed
to monitor various environmental parameters such as temperature, humidity, air quality, water quality,
and other factors. These sensors are typically deployed over a wide area, they collect data on the
environment and transmit it wirelessly to a central server or data management system [6]. Fig 2.1
shows the general architecture of an ESN, each sensor node contains one or more embedded sensors.
The sensor data is streamed to an on-site base station. The base station collects the sensor data and
transmits it to an off-site server. An end user can then access the data on the server remotely [1].
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Figure 2.1: General ESN Architecture. Image source: [1]

2.1.4 Design Challenges for ESNs

There are many hurdles to overcome when designing an ESN, coming from challenges intrinsic to
WSNs and the environmental context. Matin and Islam [7], as cited by Ukhurebor et al. [8], outline
the following design challenges:

Fault Tolerance: Environmental sensors will most likely be deployed in an outdoor environment with
harsh weather conditions. Consequentially, nodes will be more susceptible to hardware failures when
compared to a controlled environment. This needs to be accounted for when designing sensor nodes for
an ESN.

Scalability: As the number of sensor nodes of the system increases so does the complexity, computa-
tional load, and power consumption. If these factors are not accounted for in the initial system design,
the system may not be appropriately scalable for the desired application.

Power Consumption: One of the most difficult challenges when designing a WSN is power consump-
tion. Balancing the power requirements between sensor nodes, control units, and radio transmitters
leads to constraints on the magnitude of the power supply. Careful consideration is needed to ensure a
system utilises its power supply efficiently.

Transmission: Communication and data transmission is typically performed over ISM radio bands.
Radio communication is intrinsically prone to interference and signal noise which can be worsened
further by poor weather conditions. One needs to ensure that valuable sensor data is not lost during
transmission.

2.1.5 ESN Requirements

When using a WSN to develop an environmental monitoring system it is imperative to consider what is
required of the system to ensure its practical viability. G Barrenetxea et al. [9] outline 4 requirements
for developing an environmental monitoring system:

Autonomy: The system must be powered throughout its operation.
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Reliability: The system must perform as expected without continuous maintenance. End users must
be able to use the system without technical knowledge of how the system works.

Robustness: The system must be able to withstand the environment in which it is deployed. It must
be ensured that poor connectivity in remote locations or harsh weather conditions does not hinder the
system’s operation.

Flexibility: The system must be able to be altered to suit the needs of the end user. For example, if
a user wishes to collect data at a different location.

2.2 Sensor Nodes

The sensor node (SN) is a major part of the Wireless Sensor Network (WSN) system [2]. It is responsible
for sensing real-time environmental data collected by the sensors such as ambient temperature, and
atmospheric pressure. Advances in wireless communications, digital electronics, and micro-electro-
mechanical systems (MEMS) technology over the recent years allow for the creation of small, low-power,
low-cost, multifunctional Sensor Nodes [10]. However, these sensor node networks are not perfect
in terms of long-term environmental monitoring and network data security. Therefore, more power
base stations and nodes must be employed. Many micro-sensor nodes can be used by WSN to collect
high-precision data [10].

The use of SN networks is more advantageous over conventional sensing methods [10]. These advantages
include increased accuracy, greater fault tolerance, broad coverage area, and extraction of localized
characteristics. Wireless sensor nodes have unique features over traditional single-hop networks. Some
of these features [10] are:

• All SNs can work as a router and communicate with each other.

• All SNs can automatically create a private network based on the communication protocol.

• Nodes can enter or leave the network equally.

However, SNs consume a lot of power for sensing, communicating, and data processing. This means that
there must always be a continuous supply of power to the system. [11] suggest the use of switch-mode
power supplies but careful consideration must be taken into account for the SN power system due to
the risks of losses and reliability.

2.2.1 Sensor Node System Architecture

The main components of an SN are a microcontroller, transceiver unit, external memory, power source,
and one or more sensors [2]. Fig. 2.2 shows the general SN architecture showing the components
of the SN and their interfaces. These components allow the SN for data processing, sensing, and
communications. The processing unit connects distributed SN via a communication protocol. This
unit controls the functionality of the SN and processes data [11]. Most existing research uses WiFi
and Bluetooth for wireless communication technologies [10]. However, this technology has limited
remote access and a shorter transmission range. A solution to this problem is the Xbee communication
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protocol module which can transmit data over a long range of 10-100m, and a data rate of 250 Kbit/s
[2].

Microcontrollers are used as base stations in SN embedded systems over controllers such as Field
Programmable Gate Arrays (FPGAs), Digital Signal Processing (DSP), and other general-purpose
microprocessors. The advantages include low power consumption, ease of programming, low cost,
and easy interface with other devices [2]. SNs store a lot of environmental data which limits the
microcontroller storage space. A solution to this is using Flash memory due to greater storage capacity
and lower cost [2]. SN communication units use the Industrial-Specific-Medical (ISM) band, which
provides free radio, spectrum allocation, and global availability. However, the ISM band is susceptible
to interference as outlined in section 2.4. The most relevant wireless communication used in many SN
applications is Radio frequency (RF)-based communication [11].

Figure 2.2: Sensor Node Architecture. Image source: [2]

2.3 Power

The Wireless Sensor Network (WSN) can be powered in many ways. This includes battery power,
solar power, energy harvesting, and Power over Ethernet (PoE). This section covers possible and
efficient ways that WSNs can be powered without compromising the reliability of the sensor. In general,
different loads require a different power supply. The focus is mainly on supplying power to devices
such as sensor nodes, antennas, and base stations. All come with different challenges and constraints.

2.3.1 Low-Power WSN

A wireless sensor network is made up of sensor nodes which are low-powered distributed devices
that make up the sensor network. These nodes’ function is to detect changes in the physical and
environmental conditions, such as temperature and pressure, and to transfer the data to a base station
or sink point where the user can access it. These networks have a seemingly limitless number of uses,
however, the focus is on monitoring environmental changes [12].

Most of the time the network will be used in remote locations, and it might be challenging to recharge
and replace power supply units. It is crucial to reduce the overall power consumption of the sensor
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network [12].

2.3.2 Source of Energy Use

Analysing the power dissipation traits of wireless sensor nodes is the first stage in designing a low-power
wireless sensor network. The network has different components that have a wide range of options, and
picking the proper device will have an impact on energy consumption.

2.3.3 Power Supply

A key system component for wireless sensor networks is the power supply. In addition to taking the
network’s consumption characteristics into account, a low-power network must also take the supply
side into account. Most of the time, a sensor node’s power source is a battery. The battery is essential
in deciding how long a sensor node will last because it powers the entire device. Batteries are intricate
systems whose performance is influenced by a variety of elements, such as the battery’s size, the
material used for the electrodes, and the pace at which the active ingredients diffuse into the electrolyte
[13].

The rate capacity impact is one of the most crucial elements that a designer must consider. It is among
the most crucial elements that determine battery lifetime. The amount of current drawn from the
battery or the discharge rate has an impact on this effect. Every battery has a manufacturer-specified
rated current capacity. Battery life is significantly shortened when a device draws more current than
its rated value. This is because a high current draw from the battery causes the active chemicals’ rate
of diffusion through the electrolyte to lag behind their rate of consumption at the electrodes.

Long-term high discharge rates exhaust the active components in the electrodes, which leads to battery
failure.

2.3.4 Energy Reserves

Today, the main method of powering wireless devices is energy storage, namely electrochemical energy
that is kept in a battery. Other types of energy storage, however, might be helpful for wireless sensor
nodes. The fixed amount of energy stored on the device will determine the lifetime of the node
regardless of the type of energy storage used. Usable energy per unit volume (J/cm3) will be the main
metric of interest for all types of energy storage. Another problem is that an energy reservoir’s capacity
to produce electricity instantly is typically based on its size. The maximum power density (W/cm3) is
thus a problem for energy reservoirs in specific circumstances, such as micro-batteries [14].

2.3.5 Power Distribution

A wireless node can store electricity on it, but in some cases, it can also receive power from a nearby
energy-rich source. Because the power received at the node typically depends more on how much
power is transferred than on the size of the power receiver at the node, it is challenging to evaluate the
effectiveness of power distribution methods using power or energy density as parameters. However, an
effort is made to characterize the effectiveness of power distribution systems as they pertain to wireless
sensor networks [14].
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2.4 Communication Methodology

Communication and transmission of data in WSNs is typically implemented using radio. These signals
are transmitted on popular Industrial-Scientific-Medical (ISM) radio frequency (RF) bands. However,
in some implementations of WSNs, they will use optical or infrared communication instead of RF [7].

2.4.1 Overview of ISM Communications

The ISM frequency bands are scattered over the frequency range of 6.78 KHz to 245 GHz in the
radio spectrum. These bands were originally designed for use in microwave, medical equipment, and
electrode-less lamps. However, over the years, wireless communication devices have been developed
which also operate in these bands without causing interference with existing ISM applications [15].
A significant portion of these devices utilize short-range communication, such as wireless phones,
Bluetooth devices, near field communication (NFC) devices, and wireless computer networks.

A framework for the use of these frequency bands is provided by the international telecommunication
union (ITU), which is a specialized agency of the UN. Each member country of the UN has its own
jurisdiction to follow the regulation framework. Some of the key regulations specified by the ITU are
[16]

• Devices operating with the ISM bands are subject to maximum power limits which are intended
to prevent interference with other radio services.

• Many ISM devices use frequency hopping to rapidly switch between different frequencies. The
ITU specified rules for frequency hopping to ensure that devices do not interfere with other radio
services.

• ISM devices are also subject to regulations governing their harmonic emissions. Harmonic
emissions are unwanted radio signals that can interfere with other radio services. The ITU has
established limits on the amount of harmonic emissions devices can produce.

• ISM devices cannot cause harmful interference with other radio services, and operators of ISM
devices must take all reasonable measures to prevent interference.

While the ITU’s policies carry weight and are typically followed by member states, they are not
necessarily legally binding and may be considered more as guidelines than strict regulations. Therefore,
countries have the liberty to adhere to the ITU’s framework for the allocation and use of radio frequency
spectrum. However, there have been cases where countries have deviated from these regulations. When
it comes to the design of WSNs which utilize the ISM frequency bands, the exact frequencies to be
integrated into the nodes will be determined by the country in which the WSN is to be deployed.

2.4.2 Overview of Optical Communications

Most existing research into WSNs have been focused on the use of radio frequency (RF) for communi-
cations. However, RF communications can severely limit WSNs lifetime and battery resources [17]. A
solution to this issue is proposed by utilizing optical communications which offer distinct advantages
over RF, such as a high data rate of transmission and lower power requirements ([18, 19, 20] as cited
in [21]).
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In the realm of optical communications, several recognized techniques of transmitting information via
light are available. Namely, fiber-optic, free-space, infrared, and visible light. However, for the purpose
of this paper, given that WSNs are intended to connect to wireless network, fiber-optic communication
will be ignored because it requires laying of physical cables for communication.

Visible Light Communication

Visible Light Communication (VLC) is a type of optical communication which uses the frequencies
from 430 THz to 790 THz to transmit data at speeds up to 10 Gbits/s [22]. Due to the nature of
VLC, ambient light sources will degrade the performance of the VLC system. However, there are
some binary coding techniques that were designed to reduce background noise, such as Hadamard
coding and Manchester coding [22]. While this method of communication has its benefits, the biggest
limitation is the limited range of transmission of 100 meters [23]. The light sources would have to be
very high power LEDs or a similar light source [23].

Free-Space Optics Communication

Free-Space Optics Communication (FSOC) operates by transmitting invisible light beams that are safe
for the eyes, using a laser to focus light onto a photon detector equipped with a telescopic lens that
acts as the receiver [24]. Basic FSOC systems have been designed to transmit data at up to 155 MBps
over a distance of 5.6km, and for shorter distances of <150 m, at up to 10GBps [24]. FSO systems
have the benefit of ease of installation, high bandwidth, and no licensing required. However, it should
be noted that the power consumption is higher than regular RF, the communication requires clear
atmospheric conditions, and the cost of equipment ranges between $3000 and $10,000 [24]. This could
prove difficult, and potentially impossible, to implement in an WSN due to power supply limitations,
physical obstructions, and environmental conditions.

Infrared Communication

Wireless infrared communication uses infrared light to transmit data between two devices. Infrared is
generally more suited for short-range communication scenarios, however, when line of sight (LOS) can
be guaranteed, the range can be drastically improved to provide longer links [25]. If LOS cannot be
guaranteed, then the issue of atmospheric path loss, which is a combination of clean-air absorption
and scattering due to particles in the air, will cause the effective range of communication to degrade
significantly [25]. However, infrared communication does offer low cost, light weight, and moderate
data rates when LOS is provided [25].

2.5 Data Management

WSNs generally have limited resources including processing capabilities, memory, and energy/battery
[3]. The goal of a WSN is typically to collect environmental data, such as temperature, humidity, light,
or sound, and send it to users who need it for analysis or decision-making.

The data collected by WSN sensors needs to be transmitted to the users via sink node(s) [3]. A sink
node is a powerful node that acts as a gateway between the WSN and an external system such as
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the Internet. It collects the data from the WSN and forwards it to the external system for further
processing or analysis [3].

2.5.1 Overview of Methods

There are currently three methods by which the WSN data could reach the sink node(s) as detailed in
[3]:

• Local Storage: A data management method where data is stored in the node that produced
it, and the sink node sends a query to the node to collect the data. However, this method
has two main disadvantages; it can quickly exhaust the resources of nodes that store a large
amount of data, and sinks may not know in advance which node is storing the data, leading to a
communication overhead problem where queries are flooded to all nodes.

• External Storage: A data management method in which data is sent to the sink as soon as it
is produced using routing protocols. However, this method has several disadvantages. Firstly,
produced data cannot be aggregated. Secondly, if multiple sinks are deployed, the node duplicates
the data and sends it to each sink. Additionally, under a mobile scenario, the sink may miss the
data. Therefore, the external storage approach may not be feasible in applications where the
WSN has an intermittent connection with a mobile sink.

• In-network Storage: This storage scheme addresses the drawbacks of other data management
methods by replicating data in a set of nodes in the WSN. In this scheme, rendezvous nodes are
used for data storage, and when a node detects an event, it sends data to the rendezvous nodes.
Sinks interested in the data query the rendezvous nodes to retrieve the information, using the
minimal number of hops to reduce complexity and energy consumption for sink queries, and thus
increasing the lifetime of nodes [26].

Since in-network storage has been shown to be the preferred data management method, the rest of this
section will discuss the basic concept, requirements, and challenges of in-network storage.

The concept of in-network storage and its benefits during sink querying are illustrated in Figure 2.2(a)
and (b) respectively. Rendezvous nodes are illustrated by gray dots and the data producer by the black
dot [3].

Figure 2.3: In-network storage in WSN and its advantages: (a) in-network storage and (b) external
sink request. Image source: [3]
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2.5.2 Requirements of In-Network Storage

There are three main requirements for sufficient quality of service for in-network storage [3]:

• Reliability: High reliability is a major requirement for successful in-network storage process as
it ensures that each data message can reach any node in the network without errors, preventing
network inconsistency and data loss.

• Efficiency: The two major efficiency requirements for in-network storage are time and energy.
Time efficiency involves reducing the period of time that the wireless channel is occupied by a
high number of messages to make the process as fast as possible [27], while energy efficiency
involves minimizing power consumption during the process due to limited energy resources of
sensor nodes, including flash memory operation, radio communication, and idle listening.

• Scalability: The in-network storage should be able to successfully operate on any scale of WSNs.

2.5.3 Challenges of In-Network Storage

The various key challenges of in-network storage, detailed in [3], are as follows:

• Reliability: Achieving high reliability in in-network storage is challenging due to the dynamic
nature of WSNs, which can cause network connectivity to change over time, and in-network
storage must ensure that all nodes and sinks can receive data despite potential disconnections
and reconnections.

• Communication overhead: Communication overhead resulting from excessive redundant
transmission due to the broadcast storm problem [28] can lead to high energy consumption in
WSNs, making it important to avoid for reliable and energy-efficient in-network storage.

• Hotspot problem: The hotspot problem, which occurs when nodes near rendezvous locations
expend their energy resources earlier due to multi-hop route intersection and traffic concentration,
must be avoided to prevent the rendezvous location from becoming inaccessible for data source
nodes [29].

• Memory overhead: The memory capacity of sensor nodes limits the storage capacity of in-
network storage, and using the same storage nodes for a long time can lead to memory overhead,
so different nodes should be selected as storage nodes at different times to solve this problem.

• Energy efficiency: To achieve energy-efficient storage in WSNs, the wireless communication
and radio-on time must be minimized to avoid excessive redundant transmissions and high energy
consumption.

‘In-network data storage protocols for wireless sensor networks’ by K. Mekki et al., [3], goes into much
further depth on the inner-workings of in-network storage for WSNs, which will not be covered here
due to scope.

12



2.6. Implementations

2.6 Implementations

WSNs are employed for diverse environmental monitoring applications, such as agriculture, wildlife,
climate, and forest monitoring [30]. This chapter provides an overview of some research papers that
address WSN-based environmental monitoring solutions.

The paper [2], proposes a system, that can monitor gases in the air, in real time by utilising wireless
sensor networks and IoT technologies. The sensor nodes use an Arduino Mega board connected to an
MQ2 and MQ7 gas sensor. A Raspberry Pi acts as the base station and connects to the sensor nodes
via the Zigbee communication protocol. An XBee transmission module is used for wireless linking
between the sensor nodes and the base station. The base station analyses and stores the sensor data
on a local and cloud database. The test results for the system indicated that it was highly accurate in
collecting data, with a correlation coefficient greater than 0.95. Additionally, the system demonstrated
a high transmission success rate of 99% and consumed a low amount of energy, with a total power
consumption of 200mW. Some limitations of the system included potential transmission range obstacles
over large distances and it was noted that the system’s performance would likely decrease with the
addition of more sensor nodes.

[31] developed a similar system to [2] for the purpose of greenhouse automation and monitoring. Their
design also made use of a Raspberry Pi for the base station and collects temperature, humidity, and soil
moisture data. The system proved to be extremely effective in improving the greenhouse environmental
control as well as water and energy efficiency. However, they experienced issues with sensor accuracy
due to the environmental conditions in the greenhouse.

An interesting habitat monitoring WSN application was developed by [32]. Their research uses a WSN
for the purpose of counting birds within a habitat, using sensor nodes containing microphones. The
sensors record audio samples, which are used to recognize bird species via a classification process. The
data is stored at a central base where an algorithm is used to estimate the number of singing birds in
the habitat.

2.7 Conclusion

Wireless sensor networks offer a promising solution for environmental monitoring due to their low
cost compared to traditional monitoring systems, flexibility, real-time monitoring, data integration,
and scalability. However, the successful deployment of such a system requires careful consideration of
several challenges. The most significant challenges being power management, communication reliability,
data storage, and the ability to withstand harsh environmental conditions. Achieving an effective
environmental sensing system is dependent on finding a balance between reliability and performance,
which can be accomplished by an attentive and resourceful design process.
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Chapter 3

Efficient Communication & Seamless
User Interface (YNGDAV005)

3.1 Introduction

In the realm of Wild African Raptor research, the acquisition and analysis of environmental data from
nesting sites hold significant importance. Such data provides researchers with crucial insights into the
raptors’ behavior and health. Within our wireless sensor network (WSN) implementation, ensuring
convenient and remote access to environmental data from these nesting sites is a key objective, as it
directly impacts the effectiveness and efficiency of the research.

This chapter presents the design and operation of two of our specialized subsystems, dedicated to
efficient communication and a seamless user interface. Efficient communication plays a vital role in the
success of the WSN by enabling near real-time data transmission and minimizing delays between data
collection and analysis. It ensures that researchers have access to up-to-date information, allowing them
to respond promptly to changes in the environment or the raptors’ behavior. Additionally, seamless
user interface design enhances the usability of the WSN, making it intuitive and easy for researchers to
interact with the collected data and gain valuable insights.

With the primary focus on optimizing the collection, transmission, and in-network storage of temperature
and humidity data, these subsystems employ innovative approaches to ensure data integrity and
streamline the user experience with our WSN. By implementing efficient communication protocols and
designing a user-friendly interface, we aim to provide researchers with a reliable and convenient tool to
monitor and analyze the environmental conditions at the raptors’ nesting sites.

To achieve our objectives, we have made specific design choices to address the unique challenges posed
by our project. Considering the limited internet access at the remote nesting sites, we have established a
self-contained communication infrastructure utilizing sensor nodes, rendezvous nodes, and a centralized
sink node. This design allows us to overcome the limitations of internet connectivity by creating a
network within the nesting sites and ensures that we can collect and transmit environmental data
efficiently.

In addition to communication, we have dedicated efforts to create a seamless user interface that
facilitates easy access and interaction with the environmental data collected by the WSN. Our user
interface design prioritizes intuitive navigation, data visualization, and user-friendly controls. By
ensuring a seamless user experience, researchers and stakeholders can conveniently monitor and analyze
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the environmental conditions, gaining valuable insights into the raptors’ habitat and behavior.

Efficient communication and a seamless user interface offer numerous benefits to our WSN solution.
By optimizing data transmission and ensuring easy access, we enhance the efficiency of environmental
data collection and analysis. These optimizations can not only contribute to the success of our Wild
African Raptor research but also enhance the scalability and usability of our WSN design, allowing for
potential applications in various environmental monitoring projects. The implementation of efficient
communication and a seamless user interface represents an advancement for the field of wildlife research
and monitoring, empowering researchers with the tools they need to make informed decisions and drive
positive change.

3.2 System Design

3.2.1 Requirements

Table 3.1: Requirements Table for Communication and UI Subsystems

Requirement ID Description Specification ID

R1
The communication subsystem must establish reliable
and timely data transmission between sensor nodes and
the sink node.

S1

R2
The subsystem must minimize bandwidth usage to con-
serve power and optimize data transmission efficiency.

S2

R3
The subsystem must operate effectively under limited
internet connectivity or intermittent network access.

S3

R4
The user interface shall be accessible remotely, allowing
researchers to monitor environmental conditions from
any location with internet connectivity

S4

R5
The user interface shall display historical data trends and
allow users to select specific time intervals for analysis.

S5

R6
The user interface shall be compatible with popular web
browsers and mobile devices for enhanced accessibility.

S6

3.2.2 Specifications

Table 3.2: Specifications Table for Communication and UI Subsystems

Specification ID Description ATP ID

S1
The communication subsystem can transmits data from
sensor node to sink node.

ATP1

S2 The subsystem has low power and bandwidth usage. ATP2

S3
The rendezvous node and sink node create their own
Wi-Fi network in the network and has external internet
connection at sink node.

ATP3
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S4
The user interface is accessible remotely, leveraging in-
ternet connectivity to enable researchers to monitor en-
vironmental conditions from any location.

ATP4

S5
The user interface provides a visual representation of
historical data trends to enable users to analyze and
understand long-term environmental patterns.

ATP5

S6
The user interface is compatible with popular web
browsers on iOS, Android, MacOS, Windows, and Linux.

ATP6

3.2.3 Acceptance Test Procedures (ATPs)

Table 3.3: ATP Table for Communication and UI Subsystems

ATP ID Description Expected Outcome

ATP1
Verify that transmission of data from
sensor node to sink node occurs.

Sensor data should be stored intermit-
tently at the rendezvous node and at the
sink node.

ATP2
Verify that the subsystem has low power
and low bandwidth usage.

The communication between nodes
should only occur at predetermined inter-
vals, otherwise nodes should be inactive.

ATP3
Verify that the nodes collectively create
their own Wi-Fi network and has exter-
nal internet connection at sink node.

Rendezvous nodes should create their own
network and sink node should have global
internet connection.

ATP4
Verify that the user interface can be ac-
cessed remotely.

The user interface can be accessed outside
the local network.

ATP5
Verify that the user interface can display
historical data visually.

The user interface can generate charts or
diagrams for the user.

ATP6
Verify that the user interface is compat-
ible with popular web browsers.

The user interface operates identically
across all platforms.

3.3 Design Choices

In this section, we outline the design choices we made for the communication and user interface
subsystem, including the establishment of a self-contained communication infrastructure and the
selection of communication protocols, to address the challenges of limited internet access, power
constraints, and the need for a seamless user experience.

3.3.1 Self-Contained Communication Infrastructure

The self-contained communication infrastructure was a crucial design choice aimed at overcoming
the challenge of limited internet access at the remote Wild African Raptor nesting sites. In order to
establish this infrastructure, we strategically designed rendezvous nodes, which act as Wi-Fi access
points (AP) [33], creating a localized communication network for the sensor nodes. By connecting to
the AP of the rendezvous nodes, the sensor nodes can efficiently transmit data without relying on
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external internet connectivity. This self-contained approach was chosen due to its ability to provide
a reliable means of communication, ensuring data collection even in areas with no or intermittent
internet access.

The role of the centralized sink node is pivotal within the self-contained communication infrastructure,
as it serves as both an AP [34] for the rendezvous nodes and a connection to the external internet.
Acting as the data aggregation point, the sink node receives data from the rendezvous nodes, facilitating
further processing and analysis of the collected data. Moreover, the sink node acts as the gateway to
the external internet, enabling remote access and interaction with the WSN. This feature provides
researchers with convenient and remote access to the environmental data from the nesting sites, enabling
them to monitor and analyze the data without physically being present at the locations.

3.3.2 Communication Protocols

To address limited internet access and budget constraints, we initially wanted to implement radio
communication for long-distance transmission within our WSN. However, due to budget limitations,
we opted to utilize short-distance Wi-Fi communication as the communication protocol. This choice
enabled reliable and high-speed data transmission between sensor nodes and rendezvous nodes while
leveraging existing Wi-Fi hardware on the microcontrollers. Additionally, we incorporated sleep modes
where the communication between nodes is halted to minimize power consumption of the rendezvous
nodes and sensor nodes.

3.3.3 Bandwidth Optimization Strategies

To optimize bandwidth usage within our wireless sensor network (WSN) and strike a balance between
data accuracy and transmission efficiency, we implemented several strategies. Considering the relatively
slow changes in temperature and humidity over short periods of time, we made the decision to record
sensor data on the sensor node every two minutes. This allowed us to capture the necessary data while
reducing the amount of data to be transmitted.

To further minimize transmission overhead, we introduced a data collection scheme where the rendezvous
node would request the recorded data from the sensor node every 10 minutes. This approach significantly
reduced the frequency of data transmission. Subsequently, the rendezvous node aggregated the collected
data and stored it in a Comma-Separated File (CSV). To ensure long-term data storage and minimize
additional data requests, the sink node would request the aggregated data from the rendezvous node
once every 24 hours. Upon receiving the data, the sink node would store it in its local database for
further analysis and processing.

While this approach introduces a potential delay of up to 24 hours in data availability for users, it
was a necessary compromise to optimize bandwidth usage. By implementing this data collection and
transmission scheme, we aimed to strike a balance between ensuring data accuracy and minimizing
the overall transmission overhead within our WSN. This optimized approach not only conserves
bandwidth resources but also enables efficient data transmission, making our WSN suitable for remote
and low-bandwidth environments without sacrificing essential data for Wild African Raptor research.
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3.3.4 User Interface

In designing the user interface (UI), the Bootstrap framework was used. Bootstrap is a popular front-
end framework known for its responsive grid system, pre-designed UI components, and customization
options. By leveraging Bootstrap, we ensured that the user interface adapts seamlessly to various
screen sizes and devices, while also saving development time. The framework’s extensive documentation
and active community support provided valuable resources for learning and implementing Bootstrap
effectively, resulting in an efficient, visually appealing, and user-friendly interface design.

3.3.5 UI: Visual Representation of Data

To enable the visual representation of data in our user interface, we chose to integrate Flot Charts, a
widely-used JavaScript charting library. We selected Flot Charts for its extensive features, flexibility,
and compatibility with modern web browsers. By incorporating Flot Charts into our design, we
were able to create interactive and visually engaging graphs and charts that effectively communicate
historical data trends to users. The library’s comprehensive documentation and community support
facilitated our implementation, ensuring smooth integration and customization according to our specific
data visualization needs.

3.3.6 UI: Remote Accessibility and Internet Connectivity

To enable remote accessibility and internet connectivity for our user interface, we implemented a
combination of technologies, including Cloudflare. By utilizing Cloudflare’s content delivery network
(CDN) and security features, we ensured fast and reliable access to the user interface from various
locations. Furthermore, we leveraged the Sink Node of our wireless sensor network (WSN) to provide
the website, enabling researchers to access the user interface directly through the WSN infrastructure.
This approach eliminated the need for separate hosting services and streamlined the accessibility of the
user interface for monitoring environmental conditions.

To make the UI remotely accessible, a Dynamic Domain Name System (DDNS) [35] must be set up.
This was done using Cloudflare and a simple bash Cloudflare DDNS updater script [36]. This allowed
the website to be accessed via a Universal Resource Locator (URL) from anywhere in the world.
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3.4 Prototype Design

Figure 3.1: Prototype Communication and User Interface Design

Figure 3.1 illustrates the overall prototype design of the communication and user interface subsystems
in our prototype WSN. For establishing connectivity, both the rendezvous node and the sink node
create their own Wi-Fi access points (AP). The sensor nodes connect to the rendezvous node’s AP
[33], utilizing the ESP32-PICO-D4’s Wi-Fi module. The rendezvous node establishes a connection
with the sink node’s AP [34] using the Wi-Fi module on the ESP32-CAM and the Raspberry Pi Zero
respectively.

The design utilizes a various optimizations to alleviate network pressure and ensure efficient data
transmission. Data collection occurs at a frequency of two minutes on the sensor nodes, while the
rendezvous node requests the data from the sensor nodes every 10 minutes. Furthermore, the rendezvous
node stores the collected sensor data for a 24-hour period before forwarding it to the sink node, ensuring
ample time for data consolidation and optimization. At the sink node, the user interface is provided,
leveraging web technologies and software framework such as Node.js and React.js, so that no external
hardware resources are needed to host the website.

By incorporating specific microcontrollers, Wi-Fi modules, and software frameworks, the prototype
achieves the desired functionality of the communication and user interface subsystems in the WSN.

3.5 Testing and Results

3.5.1 ATP 1: Data Transmission

To verify that data is able to be transmitted from sensor node to sink node successfully, a simple string
can be generated at a sensor node and forwarded along the network to the sink node. The string can
be outputted to terminal or over a serial connection at each of the devices in the network to verify
that the string is successfully received at each node. It is expected that the string will be unaltered
and be printed at each node.
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(a) Sensor node. (b) Rendezvous node. (c) Sink node.

Figure 3.2: Terminal and serial outputs showing ‘Hello World’ propagate through the nodes in the
network

As can be seen from figure 3.2, the ‘Hello World’ string is forwarded from the sensor to the rendezvous
node, and finally to the sink node. The sink node displays the ‘Hello World’ string twice in the first
request in (c) because the programs started executing at slightly different times, hence the first two
requests to the sensor node got placed in the array on the rendezvous node before the sink node made
its request and the array was cleared.

3.5.2 ATP 2: Low Network Traffic

To verify that the nodes only transmit data between nodes at predetermined intervals, we only need to
understand at the code responsible. On the sensor node, transmission to the rendezvous node is only
executed upon the sensor node receiving a HTTP GET request. The figure 3.3 below shows the code
responsible for this behaviour.

Figure 3.3: C++ code for HTTP GET request on the sensor node

The figure 3.4 below shows the code responsible for requesting the data from the sensor node. By
simply adjusting the interval variable, the time between requests to the sensor node can be adjusted.
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Figure 3.4: C++ code for HTTP GET request on the rendezvous node

Lastly, since the sink node was coded using Python, to adjust the time between sink node requests
to the rendezvous node, a time.sleep(#) function was used, where # represents the seconds between
requests.

3.5.3 ATP 3: Wi-Fi Network Creation

To verify that the rendezvous node and sink node are creating their own Wi-Fi access points (AP), we
can use a smartphone to scan available networks.

Figure 3.5: Network scan on iOS showing node APs

Figure 3.5 shows two networks being created. ESP32-Access-Point and PiZero-Wifi being created by
the rendezvous node and sink node respectively. To verify if the sink node has internet connectivity,
we can execute a ping command on the sink node.
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Figure 3.6: Ping of google.com on sink node

Figure 3.6 shows that the sink node is able to successfully ping google.com, hence the sink node has
internet connectivity.

3.5.4 ATP 4: UI Remote Access

To verify if the UI can be accessed remotely, we only need to go to the designated URL and port
number in a browser. These were yu0n9f4m11y.co.za and port 3000.

Figure 3.7: Homepage of user interface accessed remotely

Figure 3.7 shows that the UI could be accessed remotely via the URL http://y0n9f4m11y.co.za:3000/. In
a proper deployment however the URL would be changed to a more relevant URL like https://envirosense.com/
or https://envirosense.co.za/. However, for illustration of functionality this suffices.

3.5.5 ATP 5: Displaying Data on UI

To verify that the UI can display graphs of data we can view the homepage of the UI.
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Figure 3.8: Homepage of user interface

Figure 3.8 shows that the UI can generate graphs of data and perform some basic calculations on
the data. Unfortunately, due inexperience with JavaScript and web design, implementing graphs
showing historical data based on a selected date range was unsuccessful. However, this feature can be
implemented in the future iterations of the design.

3.5.6 ATP 6: UI Cross-Platform Compatibility

To verify if the UI is cross-platform compatible, we can use the same testing process as with ATP 4.
ATP 4 was tested on the latest version of FireFox browser. The figures below show the same web page
on various popular browsers.

Figure 3.9: UI accessed via a Chromium-based browser on MacOS
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Figure 3.10: UI accessed via the Safari browser on MacOS

(a) iOS FireFox (b) iOS Chrome (c) iOS Safari

Figure 3.11: UI accessed via (a) FireFox on iOS, (b) Chrome on iOS, and (c) Safari on iOS

The figures (3.9, 3.10, 3.11) above show that the UI has been compiled by the browsers on various
platforms identically. The tested browsers shown above account for approximately 84% of the browser
market share on desktop devices [37] and approximately 90% on mobile devices [38].
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3.6 Conclusion

In conclusion, this chapter presented the design and operation of specialized subsystems dedicated
to efficient communication and a seamless user interface in the context of a wireless sensor network
(WSN) for Wild African Raptor research. The chapter emphasized the importance of convenient and
remote access to environmental data from nesting sites and outlined the objectives of optimizing data
collection, transmission, and storage.

To address the challenges posed by limited internet access and the need for a user-friendly interface,
specific design choices were made. The chapter highlighted the establishment of a self-contained
communication infrastructure using sensor nodes, rendezvous nodes, and a centralized sink node. This
design allowed for reliable and timely data transmission, even in areas with limited or intermittent
internet connectivity. The user interface design focused on intuitive navigation, data visualization, and
compatibility with popular web browsers and mobile devices.

The implementation of these design choices involved various strategies, such as utilizing short-distance
Wi-Fi communication, implementing sleep modes to minimize power consumption, and optimizing
bandwidth usage by aggregating and filtering data. The integration of the Bootstrap framework and
Flot Charts library facilitated the development of a responsive and visually appealing user interface,
capable of displaying historical data trends and enabling remote accessibility for researchers.

Overall, the chapter demonstrated the successful implementation of efficient communication and a
seamless user interface in the prototype WSN. By optimizing data transmission and ensuring easy
access to environmental data, the subsystems enhance the efficiency of data collection and analysis,
contributing to the scalability and usability of the WSN design. These advancements have the potential
to benefit not only Wild African Raptor research but also various other environmental monitoring
projects.
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Chapter 4

Hybrid Local-Cloud Database
(HLLDYL001)

4.1 Introduction

In the field of wild African raptor conservation and research, the ability to gather and analyse
environmental data from various nesting sites is of paramount importance. Access to such data allows
researchers to monitor the relationship between this data and the behaviour and health of the raptors.
In turn, facilitating the implementation of effective conservation strategies. An important aspect of
our wireless sensor network (WSN) implementation is to ensure researchers can access environmental
data from the nesting sites conveniently and remotely.

This chapter presents the design and operation of a specialised hybrid local-cloud database system,
constructed specifically to handle the environmental data from sensor nodes. With the core aim of
collecting and managing temperature and humidity data, this system utilises SQLite [39], an efficient,
lightweight database engine for local data storage at the off-site base station of the WSN. The system
is designed to retain three days’ worth of data locally. Additionally, it transfers data older than three
days to a cloud-based storage solution, Amazon Web Services (AWS) S3 bucket [40].

This hybrid local-cloud approach ensures that valuable data is preserved and accessible, regardless of
the connectivity status at the nesting sites. Integral to the design of this system is a backend API.
This feature allows users to interact with the data, allowing them to retrieve data within a specific
time range, view statistical metrics, and generate plots for visual interpretation of the data.

The ensuing sections detail the requirements, specifications and acceptance test procedures (ATPs) for
the database design, a section detailing the reasoning behind the choices made in the design process,
an overview of the final design, and finally testing and results for the ATPs.
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4.2 System Design

4.2.1 Requirements

Requirement ID Description Specification ID

R1 System should be able to collect temperature
and humidity data from the WSN.

S1

R2 System should store up to 3 days of data locally. S2

R3 System should transfer data older than 3 days
to cloud storage.

S3

R4 System should provide an API for remote data
access.

S4

R5 API should allow users to retrieve data within
a specified range.

S5

R6 API should provide statistical metrics of the data. S6
R7 API should provide data visualization features. S7

Table 4.1: Requirements Table for Hybrid Local-Cloud Storage System

4.2.2 Specifications

Specification ID Description ATP ID

S1 Data Collection: Collects temperature and
humidity data from WSN every 10 minutes.

ATP1

S2 Local Storage: Uses SQLite database on
Raspberry Pi Zero for local storage.

ATP2

S3 Cloud Storage: Transfers data to AWS S3 bucket
every 3 days.

ATP3

S4 API: REST API using FastAPI Python Framework ATP4

S5 API Retrieval: Fetch selected variables within a
specified time-range.

ATP5

S6
API Statistics: Provide minimum, maximum, mean,
and standard deviation for selected variables
within a specified time-range.

ATP6

S7 API Visualisation: Provide scatter plots and histograms
for selected variables within a specified time-range.

ATP7

Table 4.2: Requirements Table for Hybrid Local-Cloud Storage System
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4.2.3 Acceptance Test Procedures (ATPs)

ATP ID Description Expected Outcome

ATP1 Verify that the system collects
temperature and humidity data.

System should successfully
collect and store data from WSN.

ATP2 Verify that the system can store
up to 3 days of data locally.

System should always contain
the last 3 days of data on local storage.

ATP3 Verify that the system transfers
data to AWS S3 after 3 days.

System data older than 3 days
should appear in the AWS S3 bucket.

ATP4 Verify API follows a REST
architecture.

API endpoints should always
follow REST architecture
principles.

ATP5
Verify that the API allows retrieval
of data for selected variables within
a specified time range.

API should always return all
data for selected variables and
time range.

ATP6
Verify that the API returns statistical
metrics of data for selected variables
within a specified time range.

API should always return the
correct statistical metrics for
selected variables and time range.

ATP7
Verify that the API returns visualisations
of data for selected variables within a
specified time range.

API should always return the correct
visualisations for selected variables
and time range.

Table 4.3: ATP Table for Hybrid Local-Cloud Storage System

4.3 Design Choices

The following section details the reasoning behind the various choices of architectures, frameworks,
services and design implementations for the hybrid local-cloud storage system as outlined in the System
Design section.

4.3.1 Hybrid Local-Cloud Storage System

A hybrid local-cloud storage system was chosen due to local storage limitations and to ensure data
safety. Due to the limited local storage available on the Raspberry Pi Zero, storing three days’ worth
of data locally ensures that the system can function and collect data without overloading the system
memory. After this period, data is transferred to an AWS S3 bucket [40], which technically provides
unlimited storage space, ensuring that no data is lost due to local storage limitations.

Additionally, the AWS S3 bucket provides redundancy and data safety. In the event of hardware failure
at the base station, the data stored on the cloud remains safe and accessible. Cloud storage also allows
for easy scaling as the data volume grows over time.
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4.3.2 SQLite Database

The choice of SQLite as the local storage solution was influenced by the local storage limitations.
Firstly, the hardware employed at the base station, a Raspberry Pi Zero, has limited resources in terms
of storage and processing power. SQLite, being a serverless, self-contained, and zero-configuration
database engine, is an ideal fit for such a lightweight system [39]. It doesn’t require a separate server
process or system resources to operate, making it efficient for small devices like a Raspberry Pi Zero.
Moreover, SQLite offers a full-featured SQL interface, providing a robust platform for managing and
querying sensor data locally.

4.3.3 API

The integration of an API into the system is a critical component for enabling remote data access and
interaction. Given that the raptor nesting sites are in remote locations without internet connectivity,
it’s impractical for researchers to manually retrieve the data on-site. The API provides a means for
users to access the data conveniently and remotely, regardless of their location.

4.3.4 REST API Architecture

Representational State Transfer (REST) is a software design standard that defines the manner in which
an API’s endpoints are defined. Incorporating a RESTful API for the system enhances remote data
accessibility and interaction. A Rest architecture leverages, scalability, simplicity, and independence
[41]. The choice of a REST architecture introduces the possibility for the database to be implemented
on multiple platforms in the future. FastAPI was chosen to implement the REST API for its execution
speed, ease of use, robustness and built-in serialisation [42].

4.3.5 API Features

The API offers features that aim to improve the value and usability of the sensor data. A user can select
which variables they would like to retrieve and a specific time range, ensuring researchers can extract
data for a focused study. Statistical metrics and visualisations can be retrieved to provide insights into
the trends in the data. These features aid in analysis and interpretation, enabling researchers to draw
meaningful conclusions from the data.
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4.4 Final Design

Figure 4.1: Final Hybrid Local-Cloud Database Design

Figure 6.9 depicts the final design for the database. Incoming sensor data is transmitted to the base
station. To collect the incoming sensor data, a Cron job [43], which simply executes a script at a
certain time interval, runs every 10 minutes. The script reads the data at the receiver and adds it
to the local SQL database. Every 3 days another Cron job runs that executes a script to transfer
the data in the local database to the AWS S3 bucket and clear the local database. The REST API
makes queries to both the local and cloud database to fetch the sensor data. Depending on the user’s
preference the API will fetch certain variables within a specified time range. For any given range, the
user may also choose to generate certain statistical metrics and data visualisations.

4.5 Testing and Results

4.5.1 ATP 1: Data collection

To verify that the sensor data is being added to the database every 10 minutes incoming data at the
base station was monitored in the terminal for 30 minutes. After 30 minutes the number of entries in
the local database was queried and the last 3 entries in the database were inspected. The expected
outcome of this experiment is that the number of entries in the database increased by 3 and that the
last 3 entries are equivalent to the 3 entries monitored in the terminal.
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Figure 4.2: Terminal Output Showing Incoming Sensor Data Over 30 Minutes

Figure 4.3: Test Output Showing State of Local Database Before and After 30 Minutes

Figure 4.2 depicts the terminal output on the base station showing incoming sensor data. Figure 4.3
shows the results from checking the number of entries and the last 3 entries in the database before and
after 30 minutes. These results confirm that the number of entries in the database increased from 433
to 436 after 30 minutes. Additionally, the last 3 entries in the database are equal to the the 3 entries
monitored on the base station terminal. These results confirm that the database can collect and store
temperature and humidity data from the sensor network.

4.5.2 ATP 2: Local Storage

To verify that the local database always contains the last 3 days of data, a tester function was created
that queries the database and returns the oldest and most recent dates of recordings contained in the
local database. The test was executed on 18-05-2023. The expected output of this experiment is that
the tester function should return the oldest date as 16-05-2023 and the most recent date as 18-05-2023.
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Figure 4.4: Output of Tester Function To Verify the Local Database Only Stores the Most Recent 3
Days of Data

Figure 4.4 depicts the output of the tester function that returns the oldest and most recent dates of
data contained in the local database. The output shows the oldest date to be 16-05-2023 and the most
recent date as 18-05-2023. These results are as expected and thus verify that the local database always
contains only the last 3 days of sensor data.

4.5.3 ATP 3: Cloud Storage

To verify that data older than 3 days always appears in the AWS S3 bucket, a tester function was
created that queries the most recent date of data in the cloud database. The most recent entry date
was first queried on 16-05-2023 and then again on 19-05-2023. The expected output of this experiment
should show the most recent entry to always be 3 days prior to the date on which the query was made.
Meaning on 16-05-2023 the output should be 13-05-2023 and on 19-05-2023 the output should be
16-05-2023.

Figure 4.5: Output of Tester Function To Verify Data Older Than 3 Days Appears in the AWS S3
Bucket

Figure 4.5 shows the output of querying the most recent data in the cloud database on two dates
separated by 3 days. The output on 16-05-2023 was 13-05-2023 and the output on 19-05-2023 was
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16-05-2023. These results are as expected, confirming that data older than 3 days is always transferred
to the AWS S3 bucket.

4.5.4 ATP 4: Rest Architecture

All of the API features simply query the database and return representations of the data. According
to the REST architecture principles, an API request that retrieves and returns representations of data
from a database but does not update or change any resources must be formatted as a GET request
[41]. Therefore, to ensure the API follows a REST architecture all of the endpoints of the API, in its
current state, must be GET requests. This has been executed in the design to verify the API follows a
REST architecture. Figure 4.6 shows an example of one of the GET API endpoints used to fetch all of
the data from the local and cloud databases.

Figure 4.6: API GET Endpoint to Fetch All Data

4.5.5 ATP 5: Data Retrieval

To verify that the API can fetch data from the database within a specified time range the database
was manually queried between the timestamps 09-05-2023 at 10 am and 12-05-2023 at 6 pm and then
stored in an array. Next, the same dates were queried using the API request to fetch a range of data
from the database and stored it in an array. The expected output of this experiment is that the two
arrays will contain the same data and thus be equal to each other.

Figure 4.7: SQL Code For Manual Query

Figure 4.8: API Endpoint to Fetch Range of Data
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Figure 4.9: API Request to Fetch Ranged Data and Test Output Comparing API and Manual Query

Figure 4.7 shows the SQL to fetch the data manually, and figure 4.8 shows the API endpoint to fetch
data within a specified time range. Figure 4.9 shows the results from making a request to the API
endpoint and comparing the data to the manual query. These results show that the data contained in
the manual query is equivalent to that produced by the API endpoint, verifying ATP 5.

4.5.6 ATP 6: Statistical Metrics

The same manual and API queries from ATP5 were used to verify that the API produces the correct
statistical metrics for a specified range of data. The mean, median, maximum, minimum and standard
deviation were calculated for the manual query and compared to those produced by submitting a
request to the statistical metrics endpoint of the API. The expected output of this experiment is that
the statistical metrics for both the manual query and those produced by the API request should be
identical.

Manual Query API Query
Maximum Temp 30.96 30.96
Minimum Temp 13.25 13.25
Mean Temp 22.01 22.01
Median Temp 21.51 21.51
Standard Deviation Temp 5.70 5.70

Table 4.4: Table Comparing Manually Calculated Statistical Metrics and Those Returned from the
API

Table 4.4 shows a comparison between the manually calculated statistical metrics and those returned
by the API endpoint. As is depicted in the table the statistics are the same for both queries. These
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results are as expected, verifying that the API can return the correct statistical metrics for data within
a specified time range.

4.5.7 ATP 7: Data Visualisation

As for ATP 6, the same manual and API queries from ATP5 were used to verify that the API produces
the correct data visualisations for a specified range of data. A scatter plot of temperature vs time was
generated from the manual query and compared to the plot produced by the scatter plot endpoint of
the API. The expected output of this experiment is that the plots from the manual query and the API
endpoint are identical.

Figure 4.10: Comparison Between Manually Generated Visualisation and the Visualisation Returned
from the API

Figure 4.10 shows a comparison between the plot generated from the manual query and the plot
returned by the API endpoint. The two plots appear to be identical thus verifying that the API can
correctly return a visualisation of data within a specified time range.

4.6 Conclusion

The implementation and testing of this system have solidified the effectiveness of the overall system
design. The use of a lightweight SQLite database on the Raspberry Pi Zero has proven to be a
resource-efficient solution, successfully collecting and storing sensor data while operating within the
constraints of the hardware. The transfer of data older than three days to an AWS S3 bucket manages
local storage space effectively and secures long-term data safety and redundancy.

The RESTful API, with its features such as selective data retrieval, statistical metrics, and data
visualization, amplifies the accessibility, interpretability, and usability of the data. Its adherence to the
REST design principles lays a solid foundation for future scalability, offering the ability to cater to
increasing data and user demands without compromising system performance.
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Overall, the testing conducted on the system reaffirms the intended design. Each test confirmed the
system’s alignment with the defined requirements and specifications.
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Chapter 5

Reliable Sensor Node (SN) Data
Acquisition & Transmission
(MCBTIN001)

5.1 Introduction

In the context of the wireless sensor network implementation , the ability to collect and transmit
environmental data at small spatial scales (i.e territory sizes) which are relevant to the raptors nesting
sites is crucial for effective monitoring and research in the field of Wild African raptor conservation.
The acquisition and analysis of such data provides the researchers with crucial information required to
analyze the behaviour and health of the raptors.

This chapter focuses on the design and implementation of the sensor node data acquisition and
transmission system, which serves as the primary access point for sensor data for the hybrid local-cloud
database and the rendezvous node. This system is responsible for collecting data at predetermined
intervals from the temperature and humidity sensor and streaming it wirelessly to the rendezvous node,
which acts as central hub for data aggregation and communication. Additionally, the system takes into
consideration factors such data accuracy and reliability, efficient transmission and compatibility with
the overall system architecture.

The system is designed to collect data every 2 seconds from the sensor and transmit it every 10 minutes
when the sensor node is connected to the rendezvous node over wireless connection such as WiFi. The
use of the ESP32 PICO as the base station allows the system to utilize low-power optimization for 10
minutes during idle periods. This feature allows the system to have a longer lasting battery life.

To fulfill the requirements of this subsystem, the following sections explore the requirements, specifica-
tion, Acceptable Test Protocols (ATP’s) and specific design choices which led to the prototype design
implementation. Finally, the chapter provides the testing and results of the system.
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5.2 System Design

5.2.1 Context for Design

The sensor nodes play an important role in the overall system because they act as an access point for
sensor data needed by the hybrid local-cloud database and the front-end subsystem. The design must
consider factors such as sensor data accuracy, efficient transmission and compatibility with the overall
system architecture. This subsystem comprises components that enable the system to meet both the
user and functional requirements.

The sensor nodes serve as a primary means of gathering real-time environmental data in Wild African
Raptor nesting sites, specifically temperature and humidity levels. It must also ensure reliable data
acquisition at regular intervals for continuous monitoring of environmental changes. The gathered data
must be wirelessly streamed to the rendezvous node for local and cloud storage and to be able to be
displayed on the User Interface.

5.2.2 Requirements

Table 5.1: Requirements Table for Sensor node Data Acquisition and Transmission

Requirement ID Description Specification ID

R1
The subsystem should be able to collect temperature and
humidity readings from the sensor.

S1

R2
The subsystem must provide real-time monitoring of
sensor data.

S2

R3
The system must be able to communicate with the ren-
dezvous node to transmit sensor data.

S3

R4
The system must have low-power mode optimisation for
long-term usage.

S4

R5
The system must be easily integrated onto the WSN as
a whole.

S5

R6
The system must ensure reliable and accurate data ac-
quisition without any inherent biases or errors.

S6

5.2.3 Specifications

Table 5.2: Specifications Table for Sensor node Data Acquisition and Transmission System

Specification ID Description ATP ID

S1
The sensor nodes successfully collects temperature and
humidity data every 2 seconds from the sensor.

ATP1

S2
The subsystem uses DS3231 RTC to provide accurate
timely updates of sensor data.

ATP2

S3
System has built-in WiFi capabilities for wireless data
transmission.

ATP3
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S4
System utilizes deep sleep mode on ESP32 PICO D4 for
10 minutes after transmitting data every 10 minutes to
the rendezvous node.

ATP4

S5
The system is easily integrated with other subsystems of
the WSN.

ATP5

S6
The system create range checking methods to validate
sensor data.

ATP6

5.2.4 Acceptance Test Procedures (ATPs)

Table 5.3: ATP Table for Sensor node Data Acquisition and Transmission System

ATP ID Description Expected Outcome

ATP1
Verify temperature and humidity data
acquisition from the sensor.

System should successfully collects data
from the sensor every 2 seconds .

ATP2
Verify that system can provide real time
temperature and humidity monitoring.

System should successfully transmit sen-
sor data with accurate timestamps to the
rendezvous node every 10 minutes.

ATP3
Verify the subsystem can establish a
stable wireless connection with the ren-
dezvous node.

The sensor node should transmit data
over WiFi to the rendezvous node.

ATP4

Verify the system goes into sleep mode
for 10 minutes by comparing power con-
sumption in different mode of opera-
tions.

The system should consume less power
when not acquiring or transmitting data.

ATP5
Verify the system is easily integrated
into the whole system on our WSN.

System must ensure seamless data trans-
fer and compatibility with other nodes
and power supply.

ATP6
Verify that the correctness and reliability
of the collected data.

System should acquire data close to the
reference measurements values or accu-
rate sensors.

5.3 Design Choices

In the design of the SN data acquisition and transmission subsystem, several design choices were made
to ensure reliable data acquisition and transmission of temperature and humidity. These choices are
outlined below which include component selection, data acquisition techniques, Data validation and
calibration techniques and low-power mode strategies.

5.3.1 Component Selection

Selecting the right components for the sensor nodes is a vital part of the design process which allow for
ease of integration, compatibility with the overall system and cost-effectiveness.
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Sensor Nodes Microntroller

Board
Ver-
sion

Processor Memory WiFi
Deep
sleep
mode

Supported Integrated
Development Environ-
ment (IDE)

Cost (Rands)

Arduino
Uno

R3 ATmega328P 16 MHz
2KB SRAM, 32KB
FLASH, 1KB EEP-
ROM

none No Arduino IDE R250@RoboFactorySA

STM32 F051R8
48MHz ARM
Cortex-MO

6 to 64 KB FLASH
none Yes STM32Cube R173.22@Digi-

Key SA
8 KB SRAM

ESP32 PICO-
D4

240MHz
Tensilica Xtensa
LX6

448 KB SRAM
802.11
b/g/n

Yes
Arduino IDE

R181.17@Electromaker4MB FLASH ESP-IDF

NodeMCU-
32S

V3 240MHz Tensilica Xtensa LX6 512 KB SRAM
802.11b/g/n

Yes Arduino IDE R139@Eiferer

Table 5.4: Comparison of microcontroller board types for the sensor nodes

The microcontroller handling the data acquisition and transmission of temperature and humidity in the
sensor nodes was carefully chosen based on specifications listed in Table 5.4. The subsystem requires
data to be streamed wirelessly to the rendezvous node which eliminates the Arduino Uno R3 and the
STM32 boards. Keeping in mind that the sensor nodes will be placed at remote nesting sites where
there is limited internet access, but due to budget constraints the sensor nodes must have a local base
station with built-in WiFi capabilities to transmit data.

This leaves the NodeMCU-32S and the ESP32-PICO-D4 which have similar capabilities. Both boards
are based on the ESP-32 System-On-Chip (SoC) and they offer built-in WiFi connectivity which allow
for seamless integration with wireless networks. However the ESP32-PICO-D4 is much smaller in size
compared to the NodeMCU-32S allowing for a more compact design. The ESP32 PICO has a dual-core
processor which allows for higher processing of sensor data. It also has advanced low-power modes
which can extend the battery life of the sensor nodes. Even though the NodeMCU-32S is R49 cheaper,
we have chosen this board as the local base station for data acquisition.

Chosen board: ESP32-PICO-D4

Figure 5.1: ESP32-PICO-D4 Board.
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Temperature and Humidity Sensor

Sensor Type
Supply
Voltage
(Typ.)

Tempera-
ture range

Humid-
ity range

Accu-
racy

Commu-
nication
Protocol

Long term
stability

DHT11 Temperature and humidity Sensor Module 5V 0 to 50 ℃ 20 to 90% ±2ºC one-wire ±1%RH/year
±5RH

DHT22 Temperature and Humidity Sensor Module 5V -40 to 80℃ 0 to 100%
±0.5ºC

One-wire
±0.5%RH/year

±2%RH

BME280 Temperature and humidity sensor module 5V -40 to 85ºC 0 to 100%
±0.5ºC I2C

±0.5%RH/year
±2%RH SPI

Table 5.5: Comparison of temperature and humidity sensor modules for data acquisition

All the above sensor modules shown in Table 5.5 meet the requirements of the sensor node data
acquisition and transmission subsystem. However the main objective of our wireless sensor network
was to create a cost-effective solution but still able to achieve the user and functional requirements.
Both the DHT22 and BME280 have similar specifications and a much better performance compared to
the DHT11 but they are very expensive.

For the sensor nodes, we have chosen the most affordable option considering the budget constraints of the
project. The DHT11 sensor module can achieve accurate temperature and humidity measurements and
can be easily integrated into the system due to its one-wire communication protocol. The temperature
range of 0 to 50℃ is good enough for monitoring the Wild African Raptor nesting sites conditions. The
sensor does not require any external hardware for operation such an analog-to-digital (ADC) converter
because it can be interfaced directly to a digital I/O pin. The other reason for selecting this module
was that it is always in-stock. It is also widely used making it easy to find ample documentation,
sample code and support on how to integrate it into IoT projects.

Chosen Sensor Module: DHT11 Temperature and Humidity Sensor Module

Figure 5.2: DHT11 Temperature and Humidity Sensor Module.
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Real-Time Clock (RTC)

The DS3231 RTC module was chosen to ensure real-time monitoring of temperature and humidity
by providing accurate timestamps of sensor data. This module was chosen because of its ease of
integration with the ESP32-PICO board as it makes use of I2C interface. It has features such as
high accuracy, battery back-up allowing it to maintain accurate timestamps when the power supply
is removed. Since the sensor node utilizes the sleep mode when not transmitting data, the RTC can
trigger the system to wake-up and sleep which saves battery life of the nodes.

5.3.2 Data Acquisition techniques

To implement the data acquisition process we have chosen the arduino programming language to
develop firmware for the ESP32 PICO D4. This was chosen for its simplicity and utilization of ESP32
functions and libraries to interface with the DHT11 temperature and humidity sensor. To ensure
continuous data collection the microcontroller periodically trigger the sensor and waits for the sensor
to respond with the temperature and humidity measurements.The acquired data is streamed wirelessly
to the rendezvous node which can allow multiple sensor nodes deployed at different nesting sites to
transmit data as packets on our WSN. However for the real implementation, long-range transmission
will be achieved using radio frequency (RF) communication.

5.3.3 Data Validation techniques

To ensure reliability and correctness of the collected data, we have chosen the range checking algorithm.
Range checking is a technique used for data validation by making sure that the measured sensor data
falls within the range or predefined thresholds specified in the datasheets. Range checks allows us to
identify out of range data points. Through this algorithm we can maintain data integrity and accurate
data transmission.

5.3.4 Low-power mode strategies

To ensure power optimisation of the sensor nodes during idle periods, we have utilized the low-power
sleep mode supported by the ESP32-PICO-D4. This technique was chosen because it effectively reduces
the total power consumption of the SN when it’s not actively acquiring or transmitting data. This was
achieved by programming the microcontroller in the Arduino IDE to wake up or sleep periodically in
response to trigger events provided by the RTC module.
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5.4. Prototype Design

5.4 Prototype Design

Figure 5.3: Prototype Design of the Sensor Node Data Acquisition and Transmission System

The prototype design of the sensor node data acquisition and transmission subsystem is shown in
Figure 5.3. This design consists of a compact sensor node that integrates the ESP32 PICO, DHT11
Sensor and the DS3231 RTC. The ESP32 PICO is used as the SN base station for handling data
acquisition, and wireless transmission with the rendezvous node. The DHT11 sensor was securely
connected to the ESP32’s GPIO pins, allowing it to measure timestamped temperature and humidity
accurately with the use of the RTC.

The prototype design featured a small form factor, making it suitable for deployment in different
nesting sites. To ensure portable and uninterrupted operation, the sensor node was powered by a
battery. The design utilizes a wide range of features such as data validation and low-power modes
techniques that allow for efficient and accurate real-time data collection and transfer.

This arrangement allows data to be sent immediately when connected to the rendezvous node Wi-Fi
AP due to memory size limitations. The design is capable of collecting one reading per second (1Hz
sampling rate). Through the data validation techniques, the system performs data smoothing, filtering
and range checking to minimize sensor noise or fluctuations in the transmitted data. The system is
able to send a string of data every 10 minutes to the rendezvous node upon request.

5.5 Testing and Results

5.5.1 Setup for Testing

Figure 5.4 shows the setup for the sensing system. The system uses an ESP32-PICO for temperature
and humidity data acquisition from the connected DHT11 sensor module. This microcontroller also
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serves as an access point for sensor data to be transmitted wirelessly to the rendezvous node. The
DS3231 RTC is connected to the system to ensure real-time data collection and transmission. A series
of tests were conducted to evaluated the performance and reliability of the SN data acquisition and
transmission subsystem. The firmware development for testing was implemented in Arduino IDE.

Figure 5.4: Sensor Node setup for Testing

5.5.2 ATP 1: Data acquisition

To verify that the system is able to successfully read and collect temperature and humidity data every
2 seconds. The ESP32 PICO sends a read command to the sensor and wait for it to respond with the
sensor data readings. Figure 5.5 shows the code that ensures that the data collected does not have
errors. This ensures that the DHT11 sensor is properly connected to the system.

Figure 5.6 shows the terminal output with successfully acquired temperature and humidity data on
the sensor node base station for every 2 seconds when the request is made to read the DHT11 sensor.
These results confirms that the subsystem is able to monitor and collect sensor data continuously
without any inconsistencies in the readings.

Figure 5.5: C++ code for Data Acquisition and Connection Error Checking
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Figure 5.6: Terminal Output for Data Acquisition

5.5.3 ATP 2: Real-time Data Transmission

The verify that the system is able to transmit data with accurate timestamps to the rendezvous node,
a tester code was implemented and Figure 5.7 shows that data is successfully transmitted to the node.
This also verifies ATP 3 which requires the sensor node to have a stable wireless connection for data
transfer. The expected outcome is the sensor node must transmit data to the rendezvous node every
10 minutes during the normal mode of operation. The terminal output shows that this was successfully
achieved.

Figure 5.7: Terminal Output to Verify wireless data transmission to the rendezvous node

5.5.4 ATP 3: Wireless connection reliability for data transmission

This was refined by ATP 2. Figure 5.7 above shows that a reliable WiFi connection was established
between the sensor nodes and the rendezvous node to allow for seamless data transmission with the
accurate timely updates after every 10 minutes. The achieved range of transmission was over 50 meters
which can be easily extended by using long-range transmission systems but due to budget limitations,
that was not implemented on our WSN.

5.5.5 ATP 4: Low-power mode optimisation

The ESP32 PICO utilises low-power sleep mode features that allow the system to consume less power
by simply triggering it to sleep or wake up for a certain period using a timer as shown in Figure 5.8.
To verify that the system goes to sleep after data transmission, the functions in Figure 5.8 have been
executed in the design of the sensor nodes for ATP verification.

Figure 5.8: C++ code for sensor node deep sleep mode
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5.5.6 ATP 5: System Integration

To verify that the system can be integrated with the other subsystems. The system was able to be
powered by the power subsystem. The API utilised in the design of the hybrid local-cloud database
system was able to fetch sensor data with accurate timestamps coming from the sensor nodes. The
communication and User Interface (UI) was able to fetch data over WiFi from the sensor nodes as
discussed on their ATP’s for the systems.

5.5.7 ATP 6: Data Validation

A simple range checking algorithm was implemented to verify that the sensor node collect and transmit
data that is within the expected range of the sensor and any data outside that range was considered
invalid thus requiring further handling and investigation. However the DHT11 sensor was found to
produce accurate and reliable data that was collected and sent to the rendezvous node. The data was
also compared to reference measurements and it was found to be close to the expected values outputted
on the terminal as mentioned in the datasheet. Therefore no additional calibrations were needed.

Figure 5.9: Data Validation using Range Checking Method

5.6 Conclusion

Overall, the sensor node data acquisition and transmission system is designed to meet the requirements
for collecting and transmitting temperature and humidity data. This is achieved by the use of the
ESP32 PICO, DHT11 sensor and DS3231 RTC. This made the design to be compact, portable and
suitable for deployment in different nesting sites. The system proved to provide an effective access
point for sensor data and thus contributing to the overall success of the wireless sensor network
implementation.

The subsystem was able to maintain data accuracy, reliability, efficient transmission, and data correctness
due to the data validation techniques and low-power mode optimization features of the ESP32 PICO.
The design of the subsystem involved several components and design choices. This ensured that the
system is cost-effective while providing the required performance. However the system posed limitations
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for long -range transmission of data > 50m to the rendezvous node due to its utilization of Wi-Fi
built-in capabilities.

The system was tested to evaluate its performance and reliability, including verifying data acquisition,
real-time monitoring, wireless communication and system integration. This confirmed the capabilities
of the system to meet the overall requirements and specifications of the WSN.
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Chapter 6

Power Supply (MLKCLE001)

6.1 Introduction

This power supply was selected since our system will be located in areas where access to the power grid
is limited. This power supply is required to supply power to the sensor node and the rendezvous node
with the power specifications of 1A@5V and 6mA@5V respectively. The power supply makes use of
the solar panels that generates power to charge the battery. It has a power management module that
regulates the power from the solar panels and that ensures the optimal charging of the battery, with
LEDs indicating when the battery is charging, done charging, and warnings should there be anything
wrong with the solar panel. The battery has a battery health monitor that notifies the user of the
battery capacity status. This power supply has an adjustable power output since the two nodes that
need to be powered have different power specifications.

6.2 System Design

6.2.1 Requirements

Requirement ID Description Specification ID

R1 The system should be able to supply power to the
sensor node and rendezvous node.

S1

R2 The system should be able to recharge the battery
at any given location selected.

S2

R3 The system should be able to monitor
the battery health.

S3

R4 The system should be able to protect itself and
the load from overvoltage and overcurrent.

S4

Table 6.1: Requirements Table for Power Supply
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6.2.2 Specifications

Specification ID Description ATP ID

S1 An adjustable output of current and voltage
with the range of 500mA to 1.2mA and 1.2V to 5V .

ATP1

S2 A mini solar panel to generates power
to charge the battery.

ATP2

S3 A voltage divider circuit that uses micro controller
to calculate and display the battery capacity status.

ATP3

S4 Protection circuitry for overvoltage
and overcurrent.

ATP4

Table 6.2: Specifications Table for power supply

6.2.3 Acceptance Test Procedures (ATPs)

ATP ID Description Outcome

ATP1 Measure the output of the power supply
system.

The system should show the expected
voltage and current.

ATP2 Measure the output of the solar
panel.

The solar panel should produce a voltage
that can charge the battery.

ATP3 Measure the voltage across the
battery..

The battery percentage should
displace on the LCD.

ATP4 Increase in voltage and current
from the source.

The circuit should be able to detect
any overvoltage and overcurrent.

Table 6.3: ATP Table for Power Supply

6.3 Design Process

This section explains the process of selecting the suitable components that will meet the requirements.
Different modules are compared as part of the selection process.
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Power Source Specifications Use and Brief

Mini Solar Panels 9V,220mA
It is portable which makes it easy to use at any location.
It is low-power solar which is safe for our system. Low cost.

Power Grid AC from Eskom.
Sufficient power to supply any kind of system.
High cost.

Battery 3.7V Lithium battery.
It is non-chargeable but replaceable after use.
Cost more as you replace it every now and then.

Table 6.4: Power sources table

Comparing the three power sources above, the mini solar panels is more suitable for our power supply
following reasons:
• Our system will placed at areas where there is limited access to power grid therefore the solar is
much better than the power grid.
• Solar panel generates its own power unlike with non-recheable that needs to be replaced after use.

Module/Component Specification Use and Brief

Power management module
• 6V to 24V solar panel
• 3.7V Li rechargeable battery
• Provide 5V/1A output.

It regulates the power from the solar panel.

Charge controller • 6-60V
• Max output: 30A .

It controls the charging of the battery.

Table 6.5: Battery charging components

Comparing the two modules above, the power management module is more suitable than the charge
controller. As much as both are affordable, the power management module gives more than the charge
controller. The power management module is not only able to charge the battery but also regulates
the power, it has a protection circuit which is the critical part of the whole power supply sub-module.

An adjustable buck converter is more suitable for use than a fixed buck converter. As two nodes are
expected to be powered, designing the power supply that has adjustable output is more convenient.

6.4 Final Design

This section covers the choices taken to complete the design that will meet the design requirements.
The final design will consist of the following components/modules:

1. Mini Solar Panel
2. Rechargeable 3.7V Lithium Ion Battery
3. Power Management Module
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4. Adjustable Buck Converter
5. Battery health monitor

6.4.1 Mini Solar Panel

This mini solar panel is 9V 220mA that is able to generate power to charge the battery. In this design,
it is connected to the power management module which in turn regulates this power from the solar
panel. The solar panel is left connected at all times.

Figure 6.1: Mini solar panel

6.4.2 Rechargeable 3.7V Lithium Ion Battery

The battery that has been chosen for the design is the 3.7V Lithium ion rechargeable battery. This
battery is able to carry a maximum of 4.5V to the minimum of 2.1V.

51



6.4. Final Design

Figure 6.2: Rechargeable battery

6.4.3 Power Management Module

The power management module was selected as the suitable charging component. It plays an important
role in the entire power supply sub-system. It takes power from the solar panel and regulates it. It
then charges the battery to the suitable level. It has LEDs that indicates when the battery is charging,
done charging and any warnings should there be anything wrong with the solar panel. It has the
protection circuitry for any over voltage, over current.

Figure 6.3: Power management module

6.4.4 Adjustable Buck Converter

An adjustable buck converter was selected for this design. The power supply is expected to supply
different nodes with different power specifications. Therefore it is suitable to use an adjustable buck
converter that takes the output from the power management module and converts it to a suitable
power specification.
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Figure 6.4: Adjustable buck converter

6.4.5 Battery health monitor

The battery health is designed in order to keep track of the battery level. A voltage divider circuit
was built with the microcontroller. It displays the percentage of the battery capacity. Due to the
budget constraints we were not able to add the temperature sensor of the battery on our battery health
monitor.

Figure 6.5: Battery health monitor

The figure below shows a prototype of the final design of the power supply sub-system. The solar
generates power that is transferred to the power management module that in turn regulates the power
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to charge the battery. The battery store energy for later use. The battery is connected to the battery
health monitor that determines the capacity percentage and displays it. The buck converter takes the
power from the power management module and steps it down to the desired values according to our
nodes.

Figure 6.6: Final Design

6.5 Testing and Results

This section covers the testing and results of the prototype.

The aim was to ensure that our power supply is able to meet the specifications of the sensor node
which are 5V and 1A. Also to ensure that it is indeed an adjustable power supply. After several test of
the system, the figures below shows the results of the output voltage and current.
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Figure 6.7: Voltage output

Figure 6.8: Current output

The following figure shows the results of the battery health monitor that displays the percentage of the
battery capacity.
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Figure 6.9: Battery health monitor results

6.6 Conclusion

In conclusion, a power supply system that incorporates a solar panel, rechargeable battery, power
management module, buck converter, and battery health monitor is an excellent alternative to traditional
sources of energy. This system provides a reliable and sustainable source of power for our wireless
sensor network. The solar panel converts sunlight into electrical energy, which is then stored in the
battery. The solar power management module ensures that the battery charges optimally to extend its
lifespan. The buck converter regulates the voltage, making it suitable for nodes of our system, while
the battery health monitor tracks the battery’s performance and alerts the user if any issues arise.
All these components work together to provide a smooth and efficient power supply system that is
environmentally friendly and cost-effective in the long run.
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Chapter 7

Conclusions

This research paper has presented the design and implementation of a wireless sensor network prototype
intended for monitoring environmental conditions at wild African raptor nesting sites. Leveraging
a system of sensor nodes, solar power supplies, a local rendezvous node, and a remote base station
equipped with a database, API and intuitive user interface, our prototype provides a hopeful proof of
concept as a technology to aid researchers in understanding and protecting wild African raptors.

Our prototype has proven to effectively gather temperature and humidity data from 2 sensor nodes and
wirelessly transmit the data from the sensor nodes, to the local rendezvous and finally to the off-site
base station without any loss of data. The wireless nature of the system ensures non-invasive data
collection which benefits both the wildlife and the researchers. The power supply module ensures that
the nodes within the network can stay powered throughout their operation thanks to solar-powered
charging and can maintain power for multiple days even when there is little sunlight during the day.
The hybrid local-cloud database, API and easy-to-use API bolsters the system to be highly accessible
to researchers, eliminating the need to worry about the technical nuances of the system and focus on
their important research.

It must be noted that the wireless sensor network we have implemented is only a prototype and as such
there is still much do to before creating a system that can be deployed in the real world. Nonetheless,
testing has shown positive results and the prototype operates as intended. We are hopeful that this
prototype will act is a solid foundation for future development.
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Chapter 8

Recommendations

Throughout the design of our prototype and the writing of this report we have some recommendations
for future enhancements and improvements.

1. Node Protection: Given the harsh environmental conditions in the Kalahari, it is crucial to protect
the sensor and rendezvous nodes from the elements. Designing and implementing protective
cases or enclosures for the nodes to ensure their longevity and reliable performance in challenging
conditions would be greatly beneficial.

2. Power Efficiency: Since there is no power grid nearby, optimizing power efficiency is vital for
the longevity of the WSN. Optimizing the power consumption of the sensor nodes by selecting
energy-efficient sensors and employing low-power communication protocols could also be an
avenue to explore.

3. Rainfall Measurement: To measure rainfall accurately, we would like to incorporate appropriate
rain gauge sensors into our sensor nodes. These sensors can help capture rainfall data along with
other environmental factors, providing a comprehensive understanding of the ecosystem being
monitored.

4. Reliable Long-Distance Communication: Ensuring that the long-distance wireless communication
between the rendezvous node and the off-site base station is robust and reliable. We would like
to implement long-distance radio communication.

5. Node Discovery and Scalability: Enhancing the communication subsystem to facilitate easy
discovery and integration of new nodes into the network. Explore protocols like the Lightweight
Directory Access Protocol (LDAP) or Service Discovery protocols (e.g., DNS-SD) to enable
automatic discovery and integration of new nodes without manual configuration.

6. Real-time Data Updates in UI: Implement mechanisms in the web-based user interface to enable
automatic updates with new data points and new nodes. Utilize technologies such as WebSocket
or Server-Sent Events (SSE) to establish real-time data streaming from the sink node to the user
interface. This will provide researchers with up-to-date and dynamic access to environmental
data.

7. Redundancy and Data Resilience: Considering the importance of the collected environmental
data, implementing appropriate redundancy mechanisms to ensure data resilience would be
greatly beneficial. Explore techniques such as data replication, distributed storage, or data
backup strategies to protect against data loss in case of node failures or network disruptions.
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8. Security Considerations: As the WSN deals with environmental data collection and storage,
it is crucial to address security concerns. Implementing secure communication protocols (e.g.,
SSL/TLS) to protect data transmission and consider data encryption techniques to ensure data
privacy and integrity would be helpful.
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